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1 A Deep Learning Approach Using Social Media Data to Estimate Ground
Risk of UAS in Urban Areas: Executive Summary

The use of Unmanned Aerial Systems (UAS) is growing in a variety of industries, including for
inspections, law enforcement, and logistics. However, governmental regulatory agencies like the FAA
still impose strict regulations around UAS to ensure safe operations. These regulations include payload
and weight limits, restrictions on operating in airspace near airports, pilot requirements, and prohibitions
on operating over people or beyond the visual line of sight. Although waivers can be obtained to bypass
some of these restrictions, there is still a push from industry for the FAA to repeal some of the more
restrictive regulations, allowing for more autonomous UAS operations. However, as UAS autonomy
increases and the role of human pilots diminishes, more safety measures are required to ensure the UAS
can still operate safely without pilots. These safety measures can include hardware or software changes,
or can even include a revision in the UAS concept of operations and mission planning.

Current aviation practices requires risk assessment to determine the likelihood and severity of
accidents. If the likelihood of an accident is too high, or if the consequences of an incident are too severe,
then the risk level is deemed to be unacceptable. Due to the long history of manned aircraft, historical
flight data can be used to estimate failure rates and safety metrics to determine probability and severity of
failure. Consequently, this historical flight data can be leveraged to assess risk and determine if an aircraft
is operating within an acceptable target level of safety. Unlike manned aircraft, UAS do not have decades
of historical flight data to use to assess risk levels. As a result, researchers have turned to modeling and
simulation methods in an effort to quantify the risk of UAS by approximating the expected fatality rates,
measured in fatalities per flight hour. Common methods found in literature for estimating the ground
risk of a UAS failure at a given location involve approximating the failure rate, determining the probable
impact locations using the governing laws of physics given a failure event, and then approximating the
probability of a UAS causing a fatality given the impact location. The probability of causing a fatality
based on impact is dependent on the kinetic energy of the vehicle, the population density of the impact
area, and the presence of possible shelter, like buildings and trees, that may provide some protection.
This approach is probabilistic in nature due to uncertainties in the initial UAS state when estimating the
impact locations, requiring several descent trajectories to be simulated. As a result, using this physics-
based approach to approximate ground risk for a single location can be time consuming, which is why
a Machine Learning approach is explored in this work relying on data created from the physics-based
method.

Surrogate modeling is common in engineering as a way to approximate computationally ex-
pensive or time consuming processes. In recent years, Machine Learning methods have proven to be
quite good surrogate models to replace computationally expensive models provided enough data for
training. The focus of work in this paper is a novel approach for a new risk assessment method that
quantifies UAS ground risk using Machine Learning, relying on social media activity data to supplement
historical data on population density estimates. Using social media data as a way to estimate population
density can be useful for identifying dynamic areas that could be high risk and unaccounted for using
static historical data. With the physics-based approach, risk data can be generated with various UAS
configurations at different locations, and this data can be used to train a Machine Learning model that
takes UAS characteristics and the spatial distributions of population density and building coverage as
inputs. The Machine Learning approach proposed allows for quick ground risk assessment to quantify
the ground risk for given UAS flight conditions. Using this ground risk assessment, a UAS pilot can use
the route planning tool proposed with the Machine Learning model to find a suitable route that has an
acceptable level of risk based on the risk map created with the Machine Learning model.



2 Problem Statement and Background

The work proposed for the 2023 FAA Data Challenge is focused on assisting the rapidly evolv-
ing new and novel uses of the national airspace in relation to the introduction of small Unmanned Aerial
Systems (UAS). Leveraging modern approaches of modeling and simulation to quantify the ground risk
of UAS, machine learning can be used to enhance the risk assessment by decreasing the time required
to estimate risk. This time reduction allows UAS pilots to quickly evaluate risk levels for a given UAS
operation, or it can even be used to find the optimal operation that minimizes UAS ground risk.

Public interest in UAS has grown in the past few decades as they are being adopted to complete
an increasing number of tasks, ranging from surveillance to mapping. Safety concerns around the use of
UAS have slowed the adoption of the UAS into the National Airspace (NAS). Mr. N. A. Sabatini, the
former Associate Administrator for the Aviation Safety before the House aviation Subcommittee, said
in a talk, "There is a missing link in terms of technology today that prevents these aircraft from getting
unrestricted access to the NAS" [1]. As a result, the process of UAS adoption has been incremental,
where rules and regulations are slowly relaxed or repealed. Some of the more restrictive regulations
forbid operating Beyond Visual Line of Sight (BVLOS) and largely forbid operating over groups of
people. While obtaining waivers to operate BVLOS are possible, the ability to operate over people is
still heavily regulated due to safety concerns. Hence, these requirements significantly hinder UAS use
in urban areas that are dynamic and highly populated.

Urban areas can see large benefits from the capabilities UAS have to offer. This includes
decreasing response time from first responders to improving logistics for shipping food and goods, or
even delivering medical supplies in record times. However, the heavily populated areas have made UAS
use very difficult with current regulations. Currently, the FAA says the ability to fly over people varies
depending on the risk levels a UAS presents to those below, so a revision of current regulations would
be required in order to exploit the full benefits of UAS. This change cannot occur until there is sufficient
reason to believe the use of UAS in these areas is safe. Therefore, realistic and detailed risk analysis for
UAS is required to ensure any UAS operation over people does not exceed some acceptable level of risk.

With safety being the primary goal of the FAA, risk evaluation and mitigation has long been
required for manned aircraft. Due to the long history of manned aircraft, the risk assessment can be done
using historical aviation accident and incident data [2]. Because the introduction of UAS has been more
recent compared to manned aircraft, there is an insufficient collection of data related to operations like
flight hours, number of accidents and incidents, and failure rates [3]. Consequently, the use of models
and simulations has proven to be the next best option for UAS risk assessment. While the risk assessment
for manned aircraft includes the risk to those onboard, UAS do not pose similar threats, so the primary
risk for UAS is to those in other aircrafts and to those on the ground. This work will focus on the latter
and explore ground risk.

There are several factors that can impact the ground risk levels of UAS, including the sur-
rounding environment and the characteristics of the UAS and its trajectory. Several approaches can be
found in literature outlining how to approximate risk for a UAS. From [1], the risk for a UAS is quan-
tified as the expected number of fatalities per flight hour, and this metric can be determined using the
kinetic energy of the UAS on impact, the probability of hitting a person, and the availability of shelter
that might absorb some of the kinetic energy. The common ground risk assessment using this approach
is to take a predefined UAS path and simulate different failure events along the path. For each failure
event, a descent trajectory can be approximated using the governing laws of physics to estimate the
most probable impact locations. For example, in the event of a power failure, a ballistic trajectory can
be approximated to predict where the UAS will land. Finding the probable impact locations is required
because there is some uncertainty in the UAS initial position, speed, and aerodynamic characteristics,



so several descent trajectories need to be simulated. From the impact location, the kinetic energy can be
determined. Combining kinetic energy with the population density, the expected fatality rate can be cal-
culated [1]. As mentioned, this process is repeated along various points of the UAS trajectory. Because
the risk assessment is completed for a predefined path, this is of little service if the safety levels for the
given path exceed the maximum level of safety. Hence, more information is required in order to assist
in the route planning phase to ensure the path of the UAS does not exceed maximum safety levels.

In [4], the authors build on the ground risk assessment approach previously described, but use
the approach to compile a risk map. This risk map identifies the high risk areas and is used to assist
in the path planning of a UAS. Using the risk map with a path planning algorithm, the UAS can find
an optimal path that minimizes the ground risk. The authors accomplish this by discretizing a flight
zone and assessing the ground risk at every discretized location for a given cruising speed and UAS
model. Using the high-fidelity probabilistic ground risk approach previously described at every location
in the risk map can become quite time consuming and computationally expensive. This is problematic
in urban areas where the population density is incredibly dynamic and the ground risk map needs to be
updated frequently. To improve upon [4], this work offers a novel approach for ground risk assessment
for unmanned rotor vehicles using a Machine Learning model in place of the physics-based model to
enable rapid ground risk assessment. This risk assessment can then be used by the FAA and others to
quantify just how dangerous a UAS operation over people is and enables better decision making when
planning a UAS mission. To compare the physics-based approach with the Machine Learning approach,
both methods will be used to create a risk map for the campus at the Georgia Institute of Technology to
see how closely the Machine Learning method accurately estimates the physics-based model.

With a rapid way of generating a UAS risk map, UAS users can not only determine if a prede-
termined UAS route exceeds a maximum level of allowable risk, but it can also be used to find a route
that minimizes risk. By minimizing the ground risk, an additional layer of safety is added to UAS oper-
ations in urban areas, which is required if the role of the pilot is to be reduced. Reducing the need for a
pilot benefits all who are looking to use UAS by decreasing the cost of operation. However, the safety
measure alone is not the only benefit, since there is a component of public trust as well to using UAS in
urban areas. By demonstrating the UAS will be avoiding heavily populated areas, this may build trust in
the use of UAS.

3 Solution Definition

3.1 The Physics-Based Model

As mentioned in the previous section, there is a need for risk evaluation for UAS operations
to safely operate over people in urban areas, but with UAS being introduced into the airspace relatively
recently, there is insufficient flight data for UAS to make similar risk assessments as for manned aircraft.
For this reason, modeling and simulation has become the best way to estimate UAS risk. The modeling
and simulation method used in this work to approximate UAS risk is a physics-based approach based on
the state of the art methods outlined in [1] [4] [5] [6]. This physics-based approach will then be used to
generate training data so a Machine Learning algorithm can approximate the UAS risk in a more time
efficient manner.

In [1], the ground risk metric is defined as the expected rate of fatalities, with an acceptable
level of risk being 107 fatalities per flight hour based on equivalent levels of safety seen in manned
aircraft. The approach in [4] also uses this metric for ground risk assessment. The equation for the
expected rate of fatalities can be seen below for a given location [4].



fF =Aexp x Dy x P(fatality|exposure) * fgia D

In the above equation, fr is the expected rate of casualties, Ay, is the area exposed during
the crash, D), is the population density for the area of the crash, P sairy|exposure) 18 the probability of a
fatality given the exposure, and fg;4 is the rate of ground impact accidents.

3.1.1 Area Exposed During a Crash

The term A,,, from Equation 1 is the area exposed to a crash for a single person on the ground.
From [4], this area can be found with Equation 2.

Aexp =7(rp + ruas)zsin(}/) +2(rp + ruas) (hp + Fuas)cos(y) 2)

As seen above, r), is the radius of the average person, r,, is the radius of the UAS, y is the
glide angle, and £, is the height of the average person. With this, the area exposed during a crash can be
determined.

3.1.2 Population Density Estimation

The population density of an area plays a crucial role in the ground risk for a UAS. Highly
populated areas will result in a higher probability of a UAS striking a person in the event of an unplanned
and uncontrolled descent. Obtaining accurate estimates on the population density information is criti-
cal for enabling UAS ground risk assessment, otherwise the risk assessment is meaningless. Multiple
methods for estimating population density have been mentioned in literature.

In [4], city census data is used to estimate the population density. Using census data is adequate
for demonstrating proof of concept in an academic setting and is easy to obtain, but this data is static
and may not be indicative to how humans move throughout the day. Additionally, census data may
be stale and outdated by the time it is available. Another method mentioned in [4] relies on the use
of mobile phone data. Mobile phone data may be a good resource for accurate estimates throughout
the day, but obtaining this data is difficult. Accessing mobile phone data for a given area may take
days to obtain depending on the size of the area of interest. In [14], the LandScan Global Population
Database [15] is used from the Oak Ridge National Laboratory. The LandScan database is open-source
and provides high resolution (about 90m x 90m) averages of population density throughout the day and
contains population density averages for daytime as well as night time. Because the LandScan database
offers averages at different times of the day, it was the chosen databased for this work to assist in
population density estimates. The below images show a heatmap of the population density distribution
at the Georgia Institute of Technology for daytime and night time created using the 2021 LandScan
database. The units for the heatmap are people per square meter with each cell being approximately
10m x 10m.
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Figure 1: Population Density Distribution from 2021 LandScan Database

The LandScan database has one of the same disadvantages as the census data in that it is
relatively static. Because LandScan is historical data, it fails to account for anomalous events that might
result in a change in the normal expected population density. In urban areas, these anomalous events
include festivals, concerts, or parades. As a result, any risk assessment solution used in urban areas will
need to account for these occurrences that LandScan cannot in order to obtain a more complete picture
on the population density as it changes. This work proposes to supplement the use of historical data with
a new method for monitoring population density by using social media activity.

The popular social media site Snapchat has accessible information that shows how many posts
have been made within a given radius for any given GPS location. Using this method, one can request
this information for any location of interest to generate a heatmap of the Snapchat activity. This can
become useful to gain insight on events that might draw large numbers of people, which would not be
accounted for in the historical data for population densities. To test the validity of this, the social media
activity was observed while the Dogwood Festival occurred at Piedmont Park in Atlanta, Georgia from
April 15,2023 to April 17, 2023. The two images below show the social media activity at Piedmont Park
during different times of the day while the festival took place.

(a) Social Media Activity on 4/15 (b) Social Media Activity on 4/15
Around 10:40am Around 8:30pm

Figure 2: Social Media Activity Generated During the Dogwood Festival



From the images above, it can be seen that there was more social media activity as the day
progressed, suggesting there was a growing population. To show this change in population was abnormal,
the social media data was compared with the LandScan data for the same location. This comparison is
shown in the images below.

(a) LandScan Population Density (b) Social Media Activity Popula-
Estimates tion Density Estimates

Figure 3: A Comparison Between LandScan Database and the Social Media Activity

The discrepancy between the LandScan population density and the social media data collected
confirms the historical data does not properly account for anomalous events like the Dogwood Festival.
However, the social media data collected cannot be used by itself because not everyone uses social
media, nor is it used everywhere. That is why the two combined can be used to paint a better picture of
population densities by taking the maximum value between the two resources. This way the large events
that draw crowds and generate social media activity can be taken into consideration while the LandScan
database can provide average estimates at every other location that does not generate much social media
activity. As better methods for estimating population densities are derived, they can be used in place of
the methods proposed in this paper.

3.1.3 Probability of Fatality Given Exposure

The probability of fatality given exposure is the probability of a UAS strike resulting in death
if it were to impact a person. One approach outlined in [1] is to map the kinetic energy of the UAS on
impact to the probability of resulting in a fatality given the UAS impacts a person. This model takes into
account not only the kinetic energy, but it also includes a shelter factor that can provide some protection
to people on the ground. This shelter factor may be different depending on if the shelter provided is a
building, tree, or if there is no shelter at all. The more protection a shelter may provide, the higher this
shelter factor, and the less likely a UAS accident is to result in a fatality. No shelter would have a shelter
factor of 0 while a building would have a shelter factor of 5 [4]. The equation for finding probability of
fatality given exposure, P, fatality|exposure), can be found below with Equation 3 from [1].

P(fatality|exposure) = (3)

1
1
1+\/%[§mp]4ps



In the above equation, Ej,, is the Kinetic energy at impact and p; is the sheltering factor to
take into account surrounding structures that may absorb some of the energy. The « parameter is the
impact energy required for a fatality probability of 50% with a sheltering factor of 0.5 while f is the
impact energy required for a fatality as the sheltering factor goes to 0. According to [4], acceptable
values for @ and B are 100 kJ and 34 J, respectively. Also from [4], common values for the sheltering
factor for different types of shelter include O for no shelter, 2.5 for sparse trees, and 5 for low buildings.
The open-source database OpenStreetMap contains information on the location of buildings that can be
used for finding the shelter factor [16]. The image below shows the building coverage layout for the
Georgia Institute of Technology, with blue representing the buildings. Every location that did not have
any building coverage was assumed to provide no shelter. Each cell in the image below is approximately
10m x 10m.

Figure 4: Recorded Building Layouts for Georgia Institute of Technology

The final component of Equation 1 is fg74, which is the rate at which ground impacts occur.
This value is measured as number of occurrences per hour, and ideally would be based on flight history
data. In [1], the value is estimated to be between 107° to 10~ and is based on the average accident
rate involving unmanned aircraft. However, this failure rate is dependent on each vehicle specifically,
and is subject to change as vehicles become safer. For this work, a constant value of 10~ incidents per
flight hour is used as the conservative estimate within the range from [1]. This value can be updated and
changed as better estimates are collected on the true value of the probability of UAS failure.

The above approach outlined the different components of Equation 1 to quantify the ground
risk as expected fatality rates for a UAS in a given initial location. With the sheltering factor and popula-
tion density playing important roles in the ground risk calculation, it is important to know where a UAS
is going to land. If a UAS experiences a failure event at a given location, its descent trajectory could land
the vehicle at a location far from where the incident occurred depending the UAS altitude and speed.
As a result, estimating the probable impact locations of the UAS is required for proper ground risk as-
sessment to identify the quantities of its impact location, like shelter and population density. There are
countless ways that a UAS could fail resulting in an unplanned or uncontrolled descent. Some of these
failures include a power outage, a loss of one or more propellers for multi rotor vehicles, or a loss of con-
trol from a pilot. Each of these different failure types result in different descent trajectories. According
to [5], the ground risk of a UAS is dominated by a ballistic descent type that might occur if power is lost
when compared to other descent trajectories from other failure types, so for this work only a ballistic
descent is modeled to find the probable impact locations. The governing laws of physics can be used
to find the probable impact locations of a UAS that loses power at some location with some velocity,
altitude, and physical characteristics. The governing equations to find the impact locations are shown
below.

—1
mi = 7p|x|xCdA 4)
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In the governing equations, m is the UAS mass, &, ¥, 7 are the acceleration of the UAS in the
global frame with z being the altitude, p is the air density, Cy is the UAS drag coefficient, and A is the
frontal area of the UAS. For some given initial location xg, yg, zo With speeds Xy, Yo, 2o, the governing
equations can be solved for when the final altitude zy is zero to find the values of x; and y, the UAS
impact location. However, there is likely going to be some uncertainty in the initial position, velocity,
and drag coefficient [7]. In order to account for the uncertainties of the initial conditions, several descent
trajectories are required to find the most likely impact locations. Therefore, for a given descent trajectory
i, the initial conditions xo;, Yoi, Zoi» X0i> Y0i> Z0i>» and Cg; are pulled from a normal distribution with a given
mean. For example, if the probable impact locations are needed for a UAS flying with a recorded initial
speed of 5 m/s at some given location, then the velocities used for simulating the probable impact
locations would be taken from a normal distribution centered around 5 m/s. The table below illustrates
the normal distributions used for the position, velocity, and drag coefficient, taken from [7].

Parameter | Distribution
X0i N(xp,0.5)
Yoi N(y0,0.5)
20i N(z0,0.5)
xb,‘ N(X'(),Z.O)
Yoi N(,2.0)
20i N(zp,2.0)
Cyui N(C4,0.2)

Table 1: UAS Condition Parameters

To fully account for the uncertainty, 500 descent trajectories were simulated to find the prob-
able impact locations for a UAS traveling with some given initial conditions. Because the objective of
the risk assessment is to create a risk map to assist in route planning, no route for the UAS has been
determined yet, so the direction the UAS travels has not been specified. To account for this, each of the
500 different descent trajectories is given a different heading, with the heading determined by sampling
from a uniform distribution ranging between 0 and 360 degrees. The image below shows the results of
500 simulated descent trajectories to find the most probable impact locations for a UAS with some initial
conditions. In the image, it is assumed the UAS initially starts at (0,0) with each blue marker identifying
one of the probable impact locations.
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Figure 5: 500 Probable Impact Locations for a UAS

For each of the 500 trajectories simulated at a given location, the kinetic energy of the UAS,
population density and sheltering factor were recorded at the location of impact and used to find the
expected fatality rate with the equations above. After calculating 500 expected fatality rates for a given
UAS starting location, the mean fatality rate of the 500 trajectories was recorded as the fatality rate for
that location with the given initial conditions. To create a risk map used to assist in route planning, this
process needs to be repeated at various locations. For every location within the map, probable impact
locations and expected fatality rates need to be calculated. Because of this, the process to generate a
risk map can become quite time consuming as the size of the map increases. The research in [4] and
[7] attempt to make simplifying assumptions for determining the probable impact location to reduce the
computation time with the trade-off of losing some accuracy. However, adding simplifying assumptions
can only go so far before the credibility of the analysis is lost. For this reason, machine learning methods
are explored to estimate the risk in a more time efficient manner compared to the high fidelity physics-
based model. As a result, the physics-based model can be made to be as high fidelity as possible with
little concern for the computation time because the machine learning model can be used to approximate
it within some reasonable degree of accuracy in a fraction of the time required.

4 Methodology

4.1 The Machine Learning Approach

From predictive text and language processing to computer vision and autonomous vehicles,
Machine Learning has become quite popular with the rise of Artificial Intelligence (AI). Machine Learn-
ing algorithms have shown tremendous capability in learning to recognize patterns in data for problems
that are complex for traditional approaches [8]. For this reason, this work explores how well Machine
Learning methods would be able to learn and estimate the ground risk of UAS based on the data collected
from the high fidelity physics-based model.

There are many different types of algorithms that fit into the Machine Learning category, with
some being better suited for certain applications over others. For the application of estimating UAS
ground risk, the objective is to feed the UAS initial condition parameters and spatial data around a GPS
location into the Machine Learning model as inputs, which would then output an expected fatality rate
for that given location. This process could be repeated at every location in an area of interest to generate
a risk map. One way to do this would be to generate data using the physics-based model to create

11



a database of fatality rates mapped to the input conditions of the UAS. This is a supervised learning
approach where the physics model generates the output data, and the Machine Learning model can
learn the pattern between the input parameters and the output fatality rate. Because the fatality rates are
continuous, the Machine Learning algorithm will need to be used for regression rather than classification.
Therefore, a supervised learning algorithm for regression narrows down the list of suitable Machine
Learning algorithms to use.

The type of input data will also affect which type of Machine Learning algorithm is suitable.
Based on the description of the physics-based model, the type of input data required is mixed between
numeric and spatial data. Numeric data would include the mass, speed, frontal area, and altitude of the
UAS. All of these components affect the kinetic energy upon impact, and therefore affect the expected
fatality rate. Beyond the parameters just mentioned, the sheltering factor from the surrounding coverage
and the population density also play a role in the fatality rate as well. These values are scalar, but based
on the probable impact locations seen in Figure 5, it is difficult to pinpoint a single value to use since the
population density and building coverage will change based on where the UAS lands. For this reason,
the entire area encapsulating the probable impact locations is required as input to accurately estimate
the expected fatality rates. Therefore, the Machine Learning model used needs to be able to account
for both scalar values like the UAS characteristics and initial conditions and also the spatial inputs like
shelter and population density. While some Machine Learning algorithms can handle either numeric
data or spatial data, there is no one Machine Learning algorithm well suited for both. The approach
proposed in this paper combines two popular Machine Learning algorithms to account for the different
input data types. Based on the work in [9], it can be shown that a Multilayer Perceptron (MLP) and a
Convolutional Neural Network (CNN) can be combined to account for numeric as well as spatial data.
The MLP accounts for the numeric data while the CNN accounts for the spatial data. The outputs of
each of these models can then be combined with additional layers to produce a single output, predicting
the expected fatality rate. A simple summary of the model can be seen in the image below.

Numeric Data
* Mass
* Speed Multilayer
« Frontal Area Perceptron
< Altitude
Expected
Spatial Data

* Building

Convolutional
Layouts

Neural
Network

* Population
Density

Figure 6: Flowchart for the Machine Learning Model

4.1.1 The Multilayer Perceptron

The Multilayer Perceptron is one of the simplest Artificial Neural Network (ANN) architec-
tures and is comprised of one or mode hidden layers between an input layer and an output layer [8]. Each
layer consists of a number of neurons, and each neuron in a layer takes as input all the values of the neu-
rons in the layer before it and then transforms the inputs using an activation function. These values are
then passed to all the neurons in the next layer. For traditional regression applications using only a MLP,
the final layer is called the output layer and consists of a single neuron, which is the predicted value.
The diagram below illustrates a MLP with one input layer and two hidden layers used for this work. The
first hidden layer has eight neurons and the second hidden layer has four neurons, which is the same
architecture as found in [9]. The input parameters are the UAS characteristics and initial conditions.

12



Mass

Frontal Area

Speed
Altitude

N %’
S

Figure 7: The Multilayer Perceptron of the Machine Learning Model

4.1.2 The Convolutional Neural Network

Convolutional Neural Networks are specialized for processing data with grid-like topology to
learn patterns and spatial relationships, which makes them popular when images are inputs since images
are grid-like arrays of pixels [10] [11]. The main components of the CNN are the convolutional layers
and the pooling layers [12]. Most CNN architectures are a combination of convolutional and pooling
layers with the final layer being a fully connected layer comprised of all the nodes of an input array
unraveled into a single layer.

For this work, the grid-like topology input for the CNN is the building coverage and population
density for a given location of interest. This input data takes the form of two arrays, population density
and building layouts, of the surrounding area of the location of the UAS. These arrays are intended to
only encompass the area of land where the UAS is likely to land. The cells in the array for the building
coverage take the value of either 0 and 1 with O representing shelter and 1 representing no shelter. The
values in the population density array are the number of people per square meter. Based on the CNN
architecture in [9], a summary of the CNN can be seen in the image below. The CNN has an initial
convolutional layer with 16 filters, then a max pooling layer, then another convolutional layer with 32
filters and max pooling layer, then the CNN is flattened and connected to a hidden layer with 16 neurons,
and then finally one last layer with four neurons.

®, [}
@
® e}
@ @ @
> R > . @ @ ©
. @
@ \@/
Input Spatial Data Convolutional Max Convolutional Max Flattened Hidden Hidden
Layer 1:16 3x3 Pooling Layer 2: 32 3x3 Pooling Fully Layer 1:  Layer 2:
Filters Layer 1 Filters Layer2  Connected 16 4
Layer Neurons  Neurons

Figure 8: Illustration of the CNN Used

To estimate risk using the MLP and the CNN, the two output layers of each model were then
concatenated together. Three additional layers were then added to the combined output. Two hidden
layers, one with 10 neurons and one with five neurons, and finally an output layer with one neuron, were
added to the model. The final output layer with one neuron is the predicted fatality rate. The image below
shows the entire model.
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Figure 9: Combination of the MLP and the CNN to Predict Fatality Rates

Incorporating a ground risk assessment is vital to UAS operations to protect people on the
ground as UAS become more ubiquitous in the rapidly evolving national airspace, especially in highly
populated areas. The benefit of using a Machine Learning model like the one proposed over the physics-
based models currently used is the reduction in computation time required. However, this benefit comes
with the trade-off that there will be some error between the results of the Machine Learning model and
the physics-based model. The main challenge with Machine Learning applications is how to reduce the
error. Often times this error reduction can be accomplished by increasing the data used for training. By
leveraging the physics-based model, a significant supply of data can be generated to train the Machine
Learning model.

4.2 Generating Training Data

To train the Machine Learning model, data is required mapping the input conditions to the
output fatality rate. Fortunately, the physics-based model can be used to generate this data by using the
initial conditions of the UAS and the spatial data at the UAS location to calculate an expected fatality
rate. An ideal Machine Learning model used for UAS risk assessment would be able to handle any com-
bination of UAS speed, altitude, mass, frontal area, and velocity along with any distribution of shelter
and population density, so the training data would also ideally reflect several of these combinations.
However, this is not practical in a real world, so the objective is to include a large number of these com-
binations by observing the common operating conditions of UAS today. A summary of the ranges used
for the UAS characteristics can be seen below and was created using off-the-shelf UAS characteristics.

Parameter Minimum | Maximum
Mass (kg) 2.0 9.0
Frontal Area (m?) |  0.347 0.81
Speed (m/s) 5 35
Altitude (m) 15 140

Table 2: UAS Parameter Ranges
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The minimum limit for the mass was based on the findings from [17] that show a significant
difference in the chance of causing a neck injury between the 1.2 kg DJI Phantom 3 and the 3.1 kg DJI
Inspire 1. The DJI Phantom 3 had little chance to cause a neck injury while the DJI Inspire 1 had a much
higher chance, so a mass of 2 kg between the DJI Phantom and DJI Inspire was used as the minimum
value for this work.

With the ranges for the UAS characteristics determined, finding a way to sample a large num-
ber of combinations of parameters is still required to train a Machine Learning model to be as robust
as possible. For this, a Design of Experiments was used to efficiently explore the design space. A Latin
Hypercube Design of Experiments was chosen because it is a space-filling design that creates design
points evenly spread throughout the design space [18]. To ensure the design space was being thoroughly
sampled, 248,000 data points of different combinations of UAS parameters were generated. However,
the design points of the UAS parameters is only a portion of the data required, and spatial data for each
of the design points was still needed.

To generate the input training spatial data, the building coverage and population density for the
Georgia Institute of Technology were used. In Figure 1 and Figure 4, the population density and building
coverage for the Georgia Institute of Technology are shown as 2D arrays, with each 10 m x 10 m cell
being a unique location. The total size of the array was 113 rows and 135 columns, resulting in 15,504
unique locations. For each unique location of interest, a 29 cells x 29 cells window of the building
coverage and population density was extracted and used as the spatial input data for that location of
interest. The figure below demonstrates this concept. In the figure, the expected fatality rate is being
estimated for the location identified by the marker.

(@ The  Popula- e
tion Density Data (b) The Building Data
Extracted for One Extracted for One Lo-
Location of Interest cation of Interest

Figure 10: The Spatial Data Extracted for a Single Location of Interest

In an attempt to capture the effect of population density and shelter coverage on the fatality
rate with the effect of the UAS conditions, 16 different UAS conditions were used at each location of
interest to utilize the full data set generated using the Latin Hypercube Design of Experiments. With the
combination of the input spatial data and the input numeric data, the physics-based model described in
the paper was then used to estimate the expected fatality rate for each of the 248,000 cases.

A significant part of training any machine learning algorithm is cleaning the data used for
training. After running each of the 248,000 input data points in the physics-based model to estimate the
expected fatality rates, the output data was inspected to see if there were any outliers that might make
training difficult. The raw data distribution for the resulting fatality rates can be seen below.

15



kb g2 M~ e ] @ SR =
Fatality Rate (fatalities/hour)

60000

Count

40000

20000

0 0.0000001 0.0000002 0.0000003 0.0000004
Fatality Rate (fatalities/hour)

Figure 11: The Raw Data of Expected Fatality Rates Collected from the Physics-Based Model for
248,000 Cases

As seen in the figure above, the fatality rates calculated are heavily skewed with a range from 0
to 3.8x10~7 and values reaching as low as 2x10~!°. This is problematic for a couple of reasons. Machine
Learning algorithms have difficulty training when the data is not equally represented. In this case, there
are few values at the high end of the fatality rate calculation and plenty data points with low risk. These
high risk data points are not sufficiently represented. One step taken to fix this was to sample data points
that resulted in a more uniform distribution. Part of this also included trimming some of the outlier
data points at the high end as well in order to obtain enough points for training. A distribution of the
data points used can be seen below. The number of data points in this distribution is 15,524, which
is a considerable down sizing from the original 248,000. However, the full range of the UAS input
characteristics is still represented in this data set to ensure there were no gaps in the design space for
training. After cleaning the data, it was then used for the Machine Learning model training.
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Figure 12: The Filtered Data of 15,524 Data Points

4.3 Machine Learning Model Training

A key aspect to any machine learning model training is the hyperparameters. Similar to how
the model architecture can alter the performance, so can the hyperparameters set for training. These
hyperparameters include the type of loss function used, the learning rate, batch size, and even the number
of epochs used for training. The loss function used for this work was the Mean Absolute Percent Error
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(MAPE). The batch size and number of epochs were 128 and 200, respectively. These values were the
same as used in [9]. However, an early stop condition was implemented to prevent the model from
overfitting the training data if the testing validation accuracy stopped improving.

Aside from the hyperparameters mentioned above, other hyperparameters that affect the per-
formance of the model are those associated with the architecture of the model, like the number of layers
or the number of neurons in each layer of the MLP. Changing the architecture can alter the performance,
so several different architectures should be explored to find the best one. However, with an unlimited
number of possibilities for architectures, it is infeasible to try them all. For this reason, it is recom-
mended to find a suitable model that has decent performance as the baseline and fine tune the baseline
model from there. The model described above in Section 4.1 is the baseline model used for this work.
Parameters in the baseline model architecture subject to change include the number of neurons in each
of the MLP layers, the number of filters in the CNN convolutional layers, the number of neurons in the
CNN fully connected layer, and the number of neurons in the final two fully connected layers after the
outputs of the CNN and MLP have been connected. A range of each of these parameters is summarized
in the table below.

Model Parameter Minimum | Maximum

MLP Hidden Layer 1 Neurons 4 100

MLP Hidden Layer 2 Neurons 4 100
Number of Filters in Convolutional Layer 1 4 32
Number of Filters in Convolutional Layer 2 4 128
CNN Hidden Layer 1 Neurons 4 32

CNN Hidden Layer 2 Neurons 4 32
Hidden Layer 1 Neurons 4 32

Hidden Layer 2 Neurons 4 32

Table 3: Hyperparameter Ranges for Machine Learning Model Training

The Machine Learning model training was done in Python using TensorFlow. Compatible
with TensorFlow is another Python package, Keras. One of the functionalities of Keras is to automate
the random search to find the optimal model configuration, so 200 random model combinations were
generated from the ranges above and tested. Because there is some randomness in the actual training
process, each model combination was trained three different times. The model with the best performance
out of the 200 random combinations was saved.

4.4 Challenges Faced and Overcome

Often times in Machine Learning applications, brute force trial and error is the best way to
find a model that works. When a model does not perform adequately it could be the result of poor data
quality, poor hyperparameter selection, a poor selection of the most important factors, or a combination
of these and many more. Pinpointing the exact cause can be quite challenging. Some of the problems
faced in this work included problems with data quality and sub-optimal model architecture.

Right away the training data quality was problematic due to distribution of the raw data for the
expected fatality rates. With how skewed the distribution was, there were several attempts at downsizing
the data in a way to find enough data points to use without significantly reducing the total range of the
data points due to the outliers. A sample of data that could have been chosen could have been those data
points ranging from 10~ to 1078, which would have been almost 27,000 data points for training, but
then the Machine Learning model would only be suitable at estimating risk whose true value is within
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that range. The higher the upper limit on the maximum value of the range, the less data points there
were. A solution was found by removing the top 10% of the raw data to remove the outliers and taking
data points that covered whole range of the data to make a uniform distribution.

Other challenges that came with the data were the zero risk values collected from the physics-
based model. The loss function for the Machine Learning model training was the Mean Absolute Percent
Error (MAPE), which has the truth value for the estimated risk in the denominator. With the truth value
being zero, this resulted in very high MAPE. The solution to this was to put a lower limit on the fatality
rates used for training. The floor value used was 10~ fatalities per flight hour. Anything less than this
value was deemed to be safe anyway since it was two orders of magnitude lower than the acceptable
value of 1077 fatalities per flight hour, and in fact it would be more conservative to assume this higher
risk value anyway. It should be worth noting that even though the magnitude of the risk values were
incredibly small, this did not result in the MAPE exploding like when the risk was zero because all the
risk values were scaled by the maximum value prior to being used for training.

The raw data generated from the physics model not only appeared to be heavily skewed, but
it also took the apppearance of having a logarithmic distribution. There were some efforts to scale the
output data with a natural logarithmic and logarithmic with base 10. This scaling gave the data a more
uniform distribution, and as a result more of the data points could be used. Initially, this data transforma-
tion resulted in very low errors on both the training dataset and the validation dataset, sometimes with a
less than 2% MAPE. However, it was later revealed that this low error provided a false sense of accuracy.
When the data was log shifted to train the model, the model would do poorly when deployed to create
a risk map. This is because the predicted output from the model would need be transformed back to
account for the log transformation done during training, so the same data point that would be 2% during
training would be around 30%-40% off when the predicted value was transformed back. Ultimately, the
approach to scale the output data using logarithmic transformations was scrapped.

Initially, training a model on the dataset was very difficult when the orders of magnitude were
very different between the maximum and minimum points. Decreasing the range was not viewed as a
good solution, so several attempts to increase the performance model were tried. These methods included
discretizing the entire dataset range into bins and turning the regression problem into a classification
problem. Instead of trying to predict the raw value for the risk, the model would attempt to estimate the
class a datapoint belonged, and this class would be associated with the approximate risk value for the
given datapoint. However, this approach failed to produce a model with satisfactory accuracy regardless
of the number of classes the data was split into for training, so eventually this approach was scrapped as
well. Other attempts to improve the model performance for regression included using pretrained CNNs
available through TensorFlow. However, these models proved to be slow and did not boost the overall
performance.

There were two changes that ultimately lead to greater success training the Machine Learning
model. First, there was a reduction in the numeric input parameters. Choosing the right input parameters
for a model is crucial, since too few can inhibit the model to learn on some information it might need,
and too many might require a more complex model, making training more difficult. Initially, the drag
coefficient was included in the numeric data as an input for the model. However, after further review of
the data, it did not seem as if the drag coefficient played a significant role in the fatality rate. With the
small range for the drag coefficient used, this could have attributed to the low affect the drag coefficient
had on the risk values. Ultimately, the drag coefficient was removed as an input for the model, and this
helped boost model performance.

The second big change that lead to an improvement in the model performance was the change
in the structure of the input data and the CNN. With the spatial data input needing to capture the entire
area a UAS might impact upon descent, the initial size for the input spatial data was 65 cells x 65 cells,
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which would be equal to a plot of land about 650 m x 650 m. Upon further review of the input parameter
range of the UAS, the maximum distance the UAS was predicted to land was less than 200 m away from
the location of failure, suggesting the input spatial data was far too big. With the input spatial data being
so large, this was proved difficult for the model to learn. This could be similar to how too many numeric
parameters hindered the ability for the model to learn. Therefore, the input spatial data size was reduced
from 65 cells x 65 cells to 29 cells x 29 cells to still ensure the entire area of UAS impact was captured.

5 Results and Discussion

5.1 Evaluating the Machine Learning Model

The baseline Machine Learning model and the Machine Learning model optimized with the
hyperparameter random search both showed promising results when observing their MAPE on the train-
ing and validation dataset. A summary of their two architectures and their performance can be seen in
the table below.

Model Parameter Baseline Model | Optimized Model
MLP Hidden Layer 1 Neurons 8 54
MLP Hidden Layer 2 Neurons 4 54
Number of Filters in Convolutional Layer 1 16 24
Number of Filters in Convolutional Layer 2 32 4
CNN Hidden Layer 1 Neurons 16 32
CNN Hidden Layer 2 Neurons 4 32
Hidden Layer 1 Neurons 10 54
Hidden Layer 2 Neurons 5 12
Training MAPE (%) 16 15
Validation MAPE (%) 22 17

Table 4: Summary of Machine Learning Models

Based on the table above, it is shown that both the baseline model and the optimized model
performed similarly with the training data, but the optimized model performed a little better on the
validation data. However, the two models still need to be compared to the physics-based model.

To compare the physics-based model with the Machine Learning models, a risk map was
created for the campus of the Georgia Institute of Technology using the daytime population density
information from LandScan combined with the social media activity collected. A UAS was assumed
to have a mass of 6 kg, a frontal area of 0.6 m?, a flight altitude of 35 m and a flight speed of 25
m/s operating over the campus. With this UAS configuration, a risk map was finally created using the
physics-based model after hours required for completion while the Machine Learning models were able
to complete the risk map in a matter of seconds with the same UAS conditions. Although the optimized
model seemed to do better during training, the baseline model performed better when compared to the
risk map created by the physics-based model. When compared to the physics-based risk map, the MAPE
for the baseline was 19.3% while it was 22.3% for the optimized model, so the baseline model was
selected as the superior model. A comparison between the risk map created using the baseline Machine
Learning model and the physics-based risk map can be seen in the image below. As mentioned, it took
several hours to create the physics-based risk map and a few seconds to create the Machine Learning
risk map. The heat map in each figure represents the expected fatality rate, measured as fatalities per
flight hour.
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Figure 13: Comparison Between the Machine Learning Model and Physics-Based Model

The comparison above shows the Machine Learning can identify the same high risk areas
as the physics-based model, although the predicted risk from the Machine Learning model in these
high risk areas appears to be less than that from the physics-based model. However, the MAPE for the
Machine Learning model creating this risk map was still only about 19%. This can be interpreted as if
the physics-based model determines the risk for a single location is 1x10~° fatalities per flight hour, then
the Machine Learning model might predict the risk value to be 0.81x107° fatalities per flight hour. That
is one fatality every 114 years compared to a predicted 0.81 fatalities every 114 years. With how low
this frequency is, the 19% MAPE was deemed as reasonable, although future work will include trying
to minimize the MAPE further.

One benefit of using the Machine Learning model is the rapid generation of risk maps for UAS
users to identify how the UAS flight conditions might affect risk. The image below shows two different
risk maps created for two different UAS configurations.
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(a) Risk Map Created Using the Ma- (b) Risk Map Created Using the Ma-

chine Learning Model for Low Risk chine Learning Model for High Risk
UAS: Mass=2 kg, Frontal Area=0.4 m2, UAS:: Mass=8 kg, Frontal Area=0.75
Speed=25 m/s, Altitude=35 m m2, Speed=30 m/s, Altitude=35 m

Figure 14: Comparison of Risk Maps for Different UAS Conditions

By altering the UAS flight conditions and UAS parameters, UAS pilots can observe how the
risk map changes. As expected, a larger and faster UAS increases the risk compared to a smaller and
slower UAS. This ability to rapidly create risk maps with changing UAS flight parameters is meant to
assist UAS pilots in the route planning to ensure the maximum level of allowable safety is not exceeded.
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5.2 Risk-Informed Route Planning

Pattent, the industry partner for this work, is a small startup specializing in creating low risk
routes for UAS in urban areas. Their route planning solution uses population density and building cover-
age to minimize the time spent over people and maximize the time spent over buildings that can provide
coverage to people on the ground. The route algorithm they use also accounts for physical obstacles like
tall buildings and no fly zones specified by the FAA facility maps to find suitable routes. Pattent has
provided their expertise and route planning technology to assist in the current efforts of using the risk
map to find low risk routes.

The route planning algorithm provided by Pattent is a proprietary algorithm based on a modi-
fied version of the popular A* algorithm. This modification changes the heuristic function used in A* to
be a weighted combination of safety and distance. As a result, the algorithm can be used to find a com-
bination of the safest route or the fastest route as desired. For this work, the Machine Learning model
can be used to create a risk map to use with the route planning algorithm. This allows for the algorithm
to find the safest route based on minimizing the risk of the path using the risk map. This route planning
algorithm was used to find the safest route between two points at the Georgia Institute of Technology
using both risk maps created by the physics-based model and the Machine Learning model to compare
the resulting paths. The comparison of the routes created can be seen below where the red route is the
route created using the physics-based risk map and the black route is the route created using the Machine
Learning model. The heat map in the figure is the risk map associated with the Machine Learning model.

Figure 15: Comparison of the Routes Created Using the Machine Learning Risk Map and the Physics
Risk Map

The two routes created using each of the risk maps are strikingly similar, suggesting the Ma-
chine Learning model is adequate at replacing the physics-based model for assisting in route planning.
Additional confirmation of this is found when comparing the predicted risk and actual risk of the route
created using the Machine Learning risk map. The table below summarizes the risk for this route. The
predicted risk values and actual risk values are the risk values obtained using the Machine Learning risk
map and physics-based risk map, respectively.

Risk Predicted Actual Absolute Percent Error (%)
Maximum Risk (fatalities/hour) | 8.55x10~% | 7.13x1078 19.83
Average Risk (fatalities/hour) | 1.72x1078 | 1.79x10~8 4.19

Table 5: Summary of Risk Using the Machine Learning Risk Map for Route Planning
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From the table above, the error between the predicted maximum risk level and the actual
risk level is greater than the error of the predicted average risk and the actual average risk. As stated
previously, the Machine Learning model has a higher error with the higher risk areas, but with the model
still able to identify the high risk regions, it correctly avoids these areas when assisting in route planning.
The error between the predicted average risk and the actual average risk is very low, suggesting that as
long as the route planner attempts to avoid the high risk areas, the predicted risk values will be very
close to the actual risk values. It should also be noted that both routes have a maximum risk value less
than the acceptable risk level of 1077 mentioned previously.

One of Pattent’s products, Route Scout, is a web-based application to create routes for UAS
users. Using the web-based user interface, a UAS user enters the desired start and endpoint for the
UAS, and the user interface shows the resulting route and allows the user to download the list of GPS
waypoints for the UAS to follow. The Machine Learning model created in this work was implemented in
a prototype version of the next iteration of the Route Scout, allowing users not only enter in the desired
start and end point, but to use the desired UAS flight characteristics to create a more informed risk
assessment. The user can also specify the maximum level of safety required. The figure below displays
the user interface and routes created using two different UAS configurations with a desired maximum
risk level less than 107 fatalities per flight hour.
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Figure 16: Comparison of Routes Generated for Different UAS Conditions

Aside from altering the UAS characteristics to find a route, the UAS user can adjust the target
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level of safety based on the application. Some applications, like law enforcement and first responders,
may prioritize response time over safety level, so there is justification to relax the maximum level of
safety. Using the user interface, the UAS user can make these changes accordingly to emphasize arrival
time. The images below show the resulting routes created for the same UAS configuration with different
levels of safety required. As expected, the route that allows for higher rates of fatality takes the more
direct path over the high risk areas.
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Figure 17: Comparison of Routes Generated for Different Levels of Desired Safety

The objective of the Route Scout was to provide UAS pilots an easy way to plan risk-informed
routes flexible to their need. The user interface was designed to be intuitive and easy to use. Whether
it is law enforcement or delivery companies, all UAS users can utilize this technology by using it to
create safe routes. The key enabler for this is the Machine Learning model that allows for quick risk
assessment to ensure any route planned does not exceed a maximum level of allowable safety without
taking significant time to determine expected risk values.

6 Conclusion

Similar to manned aircraft, UAS require risk assessment to ensure any UAS is operating with
some acceptable level of risk. Because the UAS has been introduced relatively recently compared to
manned aircraft, the UAS do not have the comparable historical flight data that would be required for
such risk assessment. As a result, modeling and simulation methods have become the next best option
to approximate UAS risk levels. The state of the art methods for estimating UAS ground risk rely on
physics-based models to determine the descent trajectory for a UAS given a failure and then determine
the likelihood of causing a fatality if the UAS were to strike a person. This process can become com-
putationally expensive, and is not suitable for dynamic environments like cities. This work shows that
Machine Learning methods can be used to replace the slow physics-based methods. Using the physics-
based methods to generate training data, a Machine Learning model was trained with a 16% error on the
training data and a 22% error on the validation data. The Machine Learning model allows for UAS users
to rapidly generate a ground risk map based on their desired UAS flight conditions. With this risk map, it
was shown that a route planner can be used to find a path that does not exceed some allowable risk value
set by the user. This solution is presented as a flexible web-based application that can be used by any
UAS pilot operating in highly populated areas. Future work would include increasing the fidelity of the
physics-based model by incorporating additional descent trajectories and the effect of wind. Addition-
ally, more diverse population densities and building layouts should be added to the training to increase
robustness.
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