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Executive Summary 
 

 The large variance in airport taxi times provides an opportunity to create a more efficient 

method to both predict—and optimally control—the surface flow of aircraft. By maximizing 

operational efficiency on the airfield, this in turn contributes to a greater efficiency of the 

national airspace system (NAS), a vital necessity in the face of unprecedented growth in the 

aviation sector. The aim of this research is two-fold: to train a machine learning model to predict 

taxi times and then use these prediction outputs to identify optimal pushback intervals. The 

priority is on lower-fidelity models which can have more tractability across airport geometries 

than existing airfield-specified optimization algorithms.  
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I. Problem Statement 

 
A. Background 

 Taxi times are designated as the time during which an aircraft has its engines turned on 

and is maneuvering on the airfield. “Taxi-out” time begins when the blocks are released and the 

aircraft is pushed back from the gate. This time continues to elapse until the aircraft’s wheels 

have left the runway tarmac.  “Taxi-in” time begins the moment the aircraft touches down and 

concludes with the blocks being placed around the wheels when the aircraft is parked at the gate.    

 As many commercial aviation travelers know firsthand, there’s inherent variability in 

airport taxi times. There could be a long line on the way to the runway, or an occupied gate that 

forces the aircraft to idle and wait for it to open up. Stochasticity in scheduled air carrier 

operations, weather, and both upstream and downstream delays ensure a unique operating 

environment on a daily basis. The total cost of these delays in the commercial aviation industry 

in 2019 reached $33 billion, in the form of airline fuel, staff, and time, as well as both direct and 

indirect costs to passengers (missed connections, higher ticket prices, etc.)1. Better understanding 

and prediction of aircraft taxi times would reduce bottlenecks, increasing capacity in already 

constrained airports, and help to forecast future operations. This is because the most constrained 

part of American airports is the runway. Wake turbulence and other air traffic control (ATC) 

separations restrict the throughput capacity of the runway, a constraint which can be even further 

exacerbated by extreme weather. Hence, to maximize the throughput of the runway and keep it in 

use immediately after the runway clearance, ATC ground controllers will often stack up a queue 

of aircraft waiting to take off from a given runway. By maximizing the operational capacity of 

the runway system at an airport, this in turn aids in the efficient utilization of the NAS. Finding a 

balance between maximizing runway throughput and minimizing queue-induced delay is the 

formulation for taxi time optimization. 

 

B. Literature 

 Numerous efforts have been made to minimize total taxi times. These include studies of 

the optimization heuristics for taxi times under uncertainties2–5, control algorithms 6–8, and 

prediction methods9,10. Each one of these components is integral to eventually reducing taxi 

times, but often are siloed by opaque models of extreme complexity, which struggle to be 

tractable across research topics and airports. 

Two important contributors to this research are the papers produced by Simaiakis et al. on 

pushback control at Boston Logan International Airport8 (BOS) and Wang et al. on feature 

selection in taxi time prediction at three international airports9.  Simaiakis et al. devised a 

complex queueing model to inform an optimization of total taxi out time, and from this 

developed a control algorithm to maximize runway utilization while minimizing queue time in 

taxiing out. When employed at BOS across eight 4-hour test periods, taxi-out times were reduced 

by an average of 5.3 min for 144 flights, and an estimated 2,650 gallons of fuel were saved.  

Wang et al. compiled a literature review on the last 20 years of taxi time predictions, and many 

studies fell into the aforementioned siloing: a majority of these papers only focused on one 

airport. However, Wang et al. trained a machine learning model to perform across Zurich, 

Manchester, and Hong Kong’s international airports. They focused on investigating whether 

adding additional predictive features—up to 33—would increase model accuracy. While more 
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features did end up explaining more variance in taxi times, they concluded that only three 

features held true importance in predicting taxi times: whether the operation was a departure or 

arrival, the total taxi distance, and the number of other aircraft on the way to the runway when 

the current aircraft pushes back. 

 

C. Aim 

 The aim of the present research is to create a low fidelity, easily interpretable 

machine learning model to predict taxi times across airfield geometries, and use this to feed 

into a taxi time optimization algorithm. All predictor variables in our regression are not bound 

by the operating characteristics of one single airfield. By gathering enough of these predictor 

variables to explain the variance in the taxi time data, it is anticipated that taxi time can be 

predicted more accurately via machine learning techniques.  

More precise predictions can lead in turn to better scheduling, and resilience to irregular 

operations in the case of delays. Moving further beyond this regression prediction, learning a 

model on historical data can predict future performance, and hence be fed into the optimization 

of the airfield’s taxi times. Our goal is to have regressors themselves be used to find the optimal 

taxi times on the airfield. From this, one can conceive of a control algorithm to employ in the 

ATC tower to achieve this minimization of costs associated with taxi times. 

 

II. Methods 
 

A. Overview 

 

Figure 1. Research Process (Outcomes Highlighted) 
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B. Target Variables 

 To predict the taxi time of an aircraft, either inbound or outbound, there must be predictor 

variables which explain the target values—the taxi times themselves. To find the taxi times, 

accurate event time data must be sourced. The event time data for this project were provided by 

an industry partner—the Aviation Planning + Environmental team at HNTB. They released 

Aerobahn data with unmarked callsigns for June-September of 2022 for George Bush 

Intercontinental Airport (IAH), and June of 2022 for Newark International Airport (EWR).  

 These data were split into three sets: July-September 2022 at IAH (the training set) and 

June 2022 at IAH and EWR (the test sets). Modelled as normal distributions after log-

transforming the data, the average daily taxi times of the two IAH datasets are not statistically 

significantly different, but the training and EWR test set are statistically significantly different 

according to a t-test.    

 

Dataset (in log(min)) July-Sept 2022 IAH June 2022 IAH June 2022 EWR 

Average 1.24 1.23 1.31 

Standard Deviation 0.10 0.09 0.15 

Sample Size n=42,385 n=14,073 n=9,937 

Table 1. Database Statistics 

 

 Both airports serve as United Airlines hubs, but otherwise EWR and IAH are 

geometrically different (see Figure 2 below) and statistically significantly different in their taxi 

time distributions. Hence, the June datasets provide a sufficient framework for one of the aims of 

the study: investigating model prediction across rather disparate airfields. 

 

 

Fig 2. Airport Diagrams for IAH (left) and EWR (right) 
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C. Predictor Variables 

The provided Aerobahn data comes with the type of operation and the OOOI data 

necessary for calculating taxi-in and taxi-out times. OOOI data denotes time instances where the 

aircraft is block-off (pushback), wheels-off, wheels-on, and block-in (parked at gate). From this: 

 

Block In Time − Wheels On Time = Taxi-In Time 
Wheels Off Time − Block Off Time = Taxi-Out Time  

Equations 1 & 2. Taxi Time Derivations 

 

If the operation was an arrival, the taxi-in time was assigned to the target variable of 

“Taxi Time,” and if the operation was a departure, the taxi-out time was then assigned. 

 The aim of any regression is to explain the variance in the data as much as possible, and 

as such, multiple predictor variables must be instantiated to explain the historical data (see Table 

2 below).  

The variable traditionally holding the most gravity is the Departure_Indicator, as taxi-out 

times historically have far exceeded taxi-in times. Arrivals typically have faster starting speeds 

upon landing and exiting the runway than departures pushing off from the gate, especially as 

arriving pilots aim to minimize runway occupancy time (ROT). More importantly, arrivals are 

not taxiing into a queue where they must remain idle. At more and more airports, end-around 

taxiways are being constructed to bypass runway thresholds, and hence, congestion due to the 

queue on adjacent taxiways. This higher taxi-out time can be accounted for by assigning this 

indicator of “1” for a departure, and “0” for an arrival. 

Logically, the next variable to explain variations in taxi times is the total distance an 

aircraft has to taxi. There are no publicly available data on exact taxi paths, and ATC ground 

controllers may route aircraft on different routes on different days. Hence, NearMap11 was used 

to trace the minimum feasible taxi pathway for a given aircraft, and the distance for each path 

was gathered. To estimate this distance in linear footage, several assumptions were made. 

Individual gates were grouped together geometrically, typically by concourse or pier, and 

assumed to have a startup position at that average concourse location, denoted by the blue circles 

in Figure 3. Then, all lead-in lines for each gate were assigned to one of these average concourse 

locations and matched with the original Aerobahn data. When possible, taxi paths were chosen to 

avoid runway crossings, but if necessary, were routed across the runway threshold. Additionally, 

all taxiways were assumed to support the Taxiway Design Group (TDG) of the most demanding 

aircraft, although realistically these larger aircraft may be constrained in their available taxilanes 

and taxiways.  

For departure operations, this was achieved by simply mapping the average concourse 

location to the departure runway threshold. On the other hand, for arrival operations, the 

opposing runway threshold was selected as the starting point of the taxi operation. For example, 

the distance mapped in Figure 3 could serve as either a departure from the D concourse to takeoff 

on runway 15R, or an arrival on runway 33L taxiing into the D concourse. This makes a final 

assumption, where all arrivals taxi off the runway at the runway threshold. In reality, oftentimes 

pilots will carry out land and hold short operations, where they exit on the high-speed angled 

taxiways to reduce their ROT and could either shorten or lengthen the taxi distance (and time) 

denoted in this analysis. 
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Figure 3. Sample Taxi Path Routing for Calculation of Taxi “Distance” and “Angle Sum”: 

Concourse D to Runway 15L 

 

The next predictor variable of interest also derives from this taxi path routing. The sum of 

the total angles of the turns a pilot must maneuver can be supposed to linearly increase the taxi 

time. To prevent tire scrubbing on turns >50, aircraft must slow down to safely navigate such 

turns, and as such, the sum of the angles of all the turns in degrees was calculated as a predictor 

variable to help further describe the data’s variance. 

Another factor that contributes to taxi time is the taxiway system congestion. Inherently, 

the number of other aircraft active on the runways and taxiways will impact the taxi time, as 

close to ideal taxi times are achieved in sparse-traffic times, and taxi time delays are incurred 

during congested periods. To capture this congestion, four variables were defined—2 each per 

type of operation. For arrivals, “nArrIn” denotes the number of aircraft still taxiing in from their 

landing to their gate at the moment of the landing of the respective arrival. “nArrOut” captures 

the opposite: aircraft taxiing to the runway system at the landing time. For departures, the event 

catalyst is the time of pushback from the gate, or the block off time, at which point the number of 

taxiing in and taxiing out aircraft are summed in “nDepIn” and “nDepOut,” respectively. 

The sum of these “In” and “Out” variables for each operation type equals the total 

number of aircraft + 1 that are on the airfield at a time. However, it is necessary to demarcate 

these two types of taxiing because taxi out times are typically significantly higher than taxi in 

times, as discussed previously. As per Wang et al., “nDepOut” is the most significant of these 

four variables, because it increases the departure queue, within which various queuing and 

processing behavior can lead to increases in total taxi out time (by our current definition of 

pushback to takeoff). 

 For these congestion metrics in dealing with novel data, the end of the taxi time event 

(block on or wheels off) is not known, and it is assumed that no additional aircraft will contribute 

to congestion after the beginning of the taxi event time (block off or wheels on). While there is a 

possibility that aircraft may not line up on taxiways strictly in chronological order, the 
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assumption is made that any rearranging before or after the aircraft in question will balance out, 

and hence the potential for rearrangement of the queue for events ± 5 minutes from the focus 

aircraft’s start time was not modeled. 

To round out the last three predictor variables, weather data from the METeorological 

Aerodrome Reports (METARs) provided by the National Weather Service were obtained at both 

IAH and EWR for the span of the datasets at each airport12. Hourly averages from the METAR 

data were matched to the hour of the event time for the study aircraft. Temperature was seen as 

an important factor in Wang et al. at one of their study airport sites, wind speed impacts runway 

operations and may lengthen ROT, and visibility determines the approach conditions. In poor 

visibility, instrument landing systems (ILS) will be used over the visual approach (VLS). 

Because pilots’ vision is impaired by the low visibility, operations under ILS conditions will be 

further spaced out, hence reducing runway capacity throughput.  

 

Predictor Variable Type Unit Description 

Departure_ 

Indicator 
Integer null 

“1” if operation is a 

departure; “0” if it is an 

arrival 

Distance Float Feet 

Sum of minimal total taxi 

distance between gate 

approximation and runway 

threshold 

Angle Sum Float Degrees 

Sum of angles turned 

through along the taxi 

pathway 

nDepOut Integer # of aircraft 

Number of aircraft taxiing to 

runway or in takeoff queue at 

time of pushback 

nDepIn Integer # of aircraft 
Number of aircraft taxiing to 

gate at time of pushback 

nArrOut Integer # of aircraft 

Number of aircraft taxiing to 

runway or in takeoff queue at 

time of landing 

nArrIn Integer # of aircraft 
Number of aircraft taxiing to 

gate at time of landing 

Temperature Float Degrees Fahrenheit 

Surface temperature at the 

METAR data collection 

point 

Wind Speed Float Miles per hour 
Wind speed at the METAR 

data collection point 

Visibility Float Statute miles 
Visibility at the METAR data 

collection point 

Table 2. Predictor Variables for Taxi Time Regression 
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D. Regression on Taxi Time 

 To carry out the regression, data were organized into dataframes of the given predictor 

variables and target variable for each input month in Python using the pandas library. Data were 

then limited to those with a recorded taxi time of between 2.5 and 60 minutes. Any taxi times in 

exceedance of an hour might skew the prediction of normal operations, although their presence 

in historical data must be noted.  

 Since the predictor variables were on vastly different scales (visibility <= 10 statute 

miles, distance >= 20,000 ft in some cases), data were standardized using the min-max scaling 

equation: 

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 

Equation 3. Min-Max Scaling Equation 

 

In addition to scaling the data, to improve model accuracy, a log-transformation was 

applied to the target variable. The heteroscedasticity of the taxi time data with strongly-

correlated predictor variables like distance and nDepOut predicated a log-transform to achieve 

sufficient performance on taxi time prediction, tightening the range of the predictions in a log 

space, and increasing R² for the cross-validation by looking at percent error (larger residuals on 

larger times ≈ smaller residuals on smaller times). Since only three months of data were 

available to train the model, a 5-fold cross-validation was used to train the models on 80% of the 

data, and then score them on the remaining 20%. Each of the five times through the data, a 

different 20% validation set was selected by the cross-validation, and averaging across these five 

scores reduces uncertainty in the randomness of training and testing data selection.  

For the models themselves, some standard estimators were selected to apply to the 

dataset, although some, like the support-vector regressor, were unsuitable due to their quadratic 

convergence times. To investigate the accuracy of different classes of models, a linear regression, 

an elastic net regression, a k-nearest neighbors regression, decision tree regression, and random 

forest regression were all applied. The linear and elastic net both train on the linearity of the data, 

except for the “l1 ratio” of the elastic net (0 < “l1 ratio”< 1), where a ratio of 0 indicates 

regularization on the L1 norm, or “Manhattan block” distance, whereas a ratio of 1 indicates 

regularization on the L2 norm, or the Euclidean distance. The k-nearest neighbors regressor 

looks at the k-nearest data points, and labels the prediction based on its position relative to the 

linear distance between those k-nearest points. Finally, the decision tree bifurcates samples into 

discrete branch and leaf nodes, terminating in a discrete prediction value for an aircraft with 

given predictor variables. A random forest capitalizes on the semi-randomness of a single 

decision tree, and trains 100 trees in tandem, and averages across the trees to reduce sample 

variance. With the eventual goal of an interpretable model in order to develop a pushback control 

algorithm, shallower decision trees and random forests were also trained to investigate if there 

was significant loss in predictive capability with less total discrete buckets. 

For each regressor other than the strictly linear one, the hyperparameters of each 

estimator were tuned based on the cross-validation employed in the training dataset. In tuning the 

parameters via cross-validation, a constant random state for reproducibility across runs was 

ensured. For one or two parameter sweeps, a nested for-loop was used, and for larger numbers of 

parameter tuning, GridSearchCV was used to find the best estimator. Detail on the final 

parameters and significance are shown in Tables 3 & 6 and the accompanying description. 
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 Although R² has been shown to be the definitive statistic in defining model selection13, 

the root mean squared error (RMSE) was also included for consistency in metric display across 

the training and testing data. 

 

E. Towards the “2Q” Taxi Time 

 While predictions of this overall taxi time for both taxi-in and taxi-out operations is 

valuable in and of itself, further segmentation must be carried out to determine a useful optimum. 

After all, taxi-out times are significantly longer than taxi-in times, so one optimum would not be 

appropriate to carry out for predictions across both types of operations. Hence, the data was 

filtered to only include departure data, whose taxi-out time was divided as shown below. 

 

Figure 4. Definition of “2Q” Taxi Time 

 

 In the greater taxi-time regression, taxi-out time was denoted as wheels-off minus block-

off times, but the taxi-out procedure truly consists of two sub-processes: what is henceforth 

denoted the “2Q” time to the back of the departure queue, and then the separate process of 

queuing behavior and subsequent takeoff roll. While the predictor variables from the regression 

include congestion characteristics relevant to the departure queue (nDepOut), the behavior of 

such process is more difficult to describe than with one congestion variable. In perfectly 

mitigated congestion (or the lack thereof), the ideal, unimpeded taxi time simply allows the 

aircraft to taxi to the runway threshold and immediately begin the takeoff roll. In this instance, 

the lack of a departure queue leads to the assumption that the takeoff roll is minimal and taxi-out 

time then equals 2Q time.  

 In order to calculate the 2Q time, the departure queue and takeoff roll must be 

approximated to subtract from the total taxi-out time. Hence, to yield the 2Q estimate: 

 

2Q Time ≈ Taxi-Out Time − Runway Processing Time 

Equation 4. Estimation of 2Q Taxi Time 

 

where: 
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Hourly Departure Throughput
= 𝑓(Airport, Meteorological Conditions, and Operation Focus) 

Equation 5. FAA Hourly Departure Throughput 

and: 

 
Runway Processing Time (in minutes)

≈ 𝑚𝑎𝑥 [ 0, (nDepOut ∗ (
   60 ∗ Number of Departure Runways

Hourly Departure Throughput
) −

Taxi Distance

1519
)] 

Equation 6. Estimation of Runway Processing Time 

 

 The hourly departure throughput was gathered from the FAA’s 2014 capacity profiles for 

both IAH and EWR14,15. For each of the three meteorological conditions (visual, marginal, and 

instrument)—and the departure or arrival focus at EWR—the tower facility reported rate of 

arrivals was used for the hourly departure throughput variable. Although the modeled capacity 

envelopes (maximum number of operations) often exceeded this number of departures, the more 

conservative estimate was used, especially as the product to be multiplied by nDepOut in 

Equation 6 ended up bounded between 1-2.5 minutes per aircraft. Another assumption used was 

that the full departure queue (nDepOut) at the time of pushback would not be equivalent in 

length to the time of arrival at the end of the queue. To capture this, a literature-based estimate of 

a 15-knot velocity16 was assumed, which translates to 1519 ft/min. The time for the aircraft to 

reach the back of the queue is subtracted from the total product of the queue length at block-off 

time and the individual departure process times. This accounts for the fact that in times of 

departure congestion, some of the aircraft from nDepOut will have departed by the focus 

aircraft’s arrival at the queue, as well as the case in which nDepOut is minimal. In this scenario, 

if the 2Q time elapses after the departure queue attenuates, then the runway processing time = 0 

and the 2Q time equals the total taxi-out time from the previous OOOI-based definition. 

 It is important to note that while the taxi times are log-transformed for the regression 

predictions, in this case the runway processing time and taxi-out time are taken from the original, 

un-scaled and un-transformed data for the calculation of the 2Q time. Only after this 

modification are the 2Q times log-transformed. Then, these times were fed into an identical 

regression model selection process as described in section III-IV, to tune the model parameters to 

the new data, yielding performance metrics on the training data cross validation (Table 6) and the 

June testing data for both IAH and EWR (Table 7). 

 

F. Optimization Formulation 

 The fundamental problem in deciding on the optimal pushback rate is how best to balance 

marginal costs of type A: those associated with not being able to use a runway for lack of queued 

planes, versus marginal costs of type B: those associated with having planes wait in a queue to 

enter the runway. If taxi-out times were known precisely, then planes could push back at a rate 

and sequence that minimizes the sum of these costs, which would imply planes reaching the head 

of the runway just in time to begin takeoff, without spending any time in queue. However, taxi 

times are variable depending on a variety of factors, such as distance from gate to runway, 

aircraft size, weather conditions, aircraft traffic, and pilot tendencies. This variability translates 

into uncertainty for the air traffic controller about the times that pushed back planes will actually 

reach the runway. 
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Since it is typically assumed that the type A costs associated with underutilization of the 

runway far exceed the type B costs, this uncertainty in taxi times leads controllers to “hedge” 

toward higher pushback rates than they would without uncertainty, thus creating long queues. 

However, whether controllers should actually hedge toward higher or lower rates will depend on 

whether type A and B marginal costs are greater, while the optimal extent of such hedging will 

depend on the relative magnitudes of these marginal costs, as well as the degree of uncertainty in 

taxi times. It can be hypothesized that, because of the rising costs of jet fuel17, the type B costs 

resulting from long lines of idling planes are not negligible compared to the type A costs.  

The pushback problem, as described above, is an archetypal example of the classic 

“newsboy problem” in which a newsboy facing uncertain demand for newspapers has to decide 

how many to order at the beginning of the day. If the newsboy orders too few newspapers he will 

miss out on potential profits, while if he orders too many he will bear the cost of the unsold 

papers. The newsboy problem can be solved by using a probability distribution to represent the 

uncertain demand and then determining the order quantity that will minimize the mathematical 

expectation of total cost over this distribution. The newsboy problem has been used to solve 

many practical problems in inventory and supply chain management.  

 

Figure 5. Optimization Formulation as the “Newsboy Problem” 

 

Recognizing the pushback problem as a version of the newsboy problem implies that the 

optimal pushback rate at any given time can be determined from (i) a probability distribution 

representing the current (uncertain) estimate of taxi-out time and (ii) a specification of the 

relative magnitudes of the type A and type B marginal costs. In the present study, a variety of 

statistical and machine learning methods are applied to historical data to derive the required 2Q 

taxi time distributions under a range of airport conditions. The type A and type B costs are then 

estimated, which are assumed to be constant for any given airport, but could vary across airports 

via user-defined inputs (i.e. one airport may heavily prioritize runway utilization). These 

estimates are then used to deterministically derive optimal pushback intervals and rates that are 

specific to contemporaneous airport conditions. The expectation is that the results can be 

calibrated to different airports and used to provide real time decision support to air traffic 

controllers, resulting in significant cost savings. 

The “type A” cost in our formulation is the cost of underutilizing the runway. While 

others have placed a high cost on underutilizing the runway—even as much as equivalent to the 

cost of a queue of 25 departures8—the cost of underutilization is only actually equal to the sum 

of the delays incurred. Hence, the type A cost is the sum of the aircraft operating cost and the 
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passenger-incurred costs per additional minute on the airfield beyond optimum. The aircraft 

operating cost per block minute is comprised of crew, fuel, maintenance, and ownership totaling 

$80.52, and the FAA-prescribed per-passenger cost is $0.7818. Conservatively assuming 100 

passengers per flight the type A Cost per minute is: 

 

Type A Cost = $80.52 + $0.78 ∗ 100 

Type A Cost = $158.52 

 

The “type B” cost in our formulation is the queueing cost. Excessive queueing causes a 

major expense for the operating air carriers. In 2022, the global airline industry spent 30.1% of 

its operating expenses, or $221.8 billion on fuel17. Fuel burn while taxiing represents 7% thrust 

in each engine, consuming around 0.2-0.7 gallons/sec/engine19, and with aviation fuel hovering 

around $100 per barrel, every second saved on the tarmac corresponds to savings to the airlines, 

who already operate on thin margins. With a current cost of fuel at $93/barrel20, an assumption of 

all dual-engine aircraft, and an estimate of 0.45 gal/sec/engine taxi fuel burn, the queueing fuel 

cost is: 

Type B Cost = $93 ∗ 0.45 ∗ 2 ∗ 60 ∗ 0.0238095238 

Type B Cost = $119.60 

  

Assuming the exponentiated 2Q taxi times follow a log-normal distribution, the optimal 

pushback interval T (the inverse of the pushback rate) can be shown to correspond to the 2Q taxi 

time with cumulative probability equal to: 

 
Type B Cost

Type B Cost+Type A Cost
 

Equation 7. Taxi Time Cumulative Probability 

 

Thus, the value of T can be calculated from the model-output prediction of the 2Q taxi 

time, 𝜇, and the RMSE of the model used for the prediction, 𝜎: 

 

𝑇 = 𝐹−1 (
Type B Cost

Type B Cost+Type A Cost
, 𝜇, 𝜎) 

𝑃 =
𝑡

𝑇
(averaged across all upcoming flights in said period) 

Equations 8 & 9. Optimal Pushback Interval (𝑇) and Pushback Rate (𝑃) Per t-Minute Period 

 

where 𝐹−1 is the cumulative distribution function for the log-normal distribution with the 

cumulative probability as the first argument. The derivation of such formulas is found in 

Appendix II. 
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III. Results 
  

The best values in Tables 3-4, 6-7 are bolded. 

 

Estimator Tuned Hyperparameters R² RMSE 

LinearRegressor() N/A 0.45 0.40 

ElasticNetRegressor() alpha = 0.1, l1_ratio = 0.01 0.39 0.43 

KNeighborsRegressor() n_neighbors = 31 0.54 0.37 

DecisionTreeRegressor() max_depth = 9, max_leaf_nodes = 40 0.58 0.35 

RandomForestRegressor() 
max_depth = 10, max_leaf_nodes = 

102, min_samples_split = 50 
0.61 0.34 

ShallowDecisionTreeRegressor() max_depth = 5, max_leaf_nodes = 20 0.54 0.37 

ShallowRandomForestRegressor() 
max_depth = 5, max_leaf_nodes = 

102, min_samples_split = 50 
0.55 0.37 

Table 3. Regression Results from Training Data on Total Taxi Time (Jul-Sep 2022, IAH) 

 

 

Estimator 
IAH – June 2022 EWR – June 2022 

R² RMSE R² RMSE 

LinearRegressor() 0.46 0.40 -0.08 0.62 

ElasticNetRegressor() 0.40 0.42 -0.12 0.63 

KNeighborsRegressor() 0.53 0.37 -0.03 0.60 

DecisionTreeRegressor() 0.55 0.36 -0.10 0.62 

RandomForestRegressor() 0.56 0.35 0.03 0.59 

ShallowDecisionTreeRegressor() 0.58 0.35 0.00 0.60 

ShallowRandomForestRegressor() 0.53 0.37 0.01 0.59 

Table 4. Regression Prediction Results on Total Taxi Time Test Data from IAH and EWR (June 

2022) 

 

Linear Regressor on Total Taxi Time Data 

Departure_Indicator Distance Angle Sum nArrOut nArrIn 
Intercept 

0.74 0.47 -0.07 -0.05 0.51 

nDepOut nDepIn Temperature Wind Speed Visibility 
1.56 

0.36 0.00 0.14 0.09 -0.09 

Table 5. Coefficients for Linear Regressor on Total Taxi Time Data 
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Estimator Tuned Hyperparameters R² RMSE 

LinearRegressor() N/A 0.64 0.67 

ElasticNetRegressor() alpha = 0.1, l1_ratio = 0.99 0.38 0.87 

KNeighborsRegressor() n_neighbors = 21 0.79 0.50 

DecisionTreeRegressor() 
max_depth = 7, max_leaf_nodes = 40, 

min_samples_split = 62 
0.82 0.47 

RandomForestRegressor() 
max_depth = 10, max_leaf_nodes = 

102, min_samples_split = 50 
0.83 0.46 

ShallowDecisionTreeRegressor() max_depth = 5, max_leaf_nodes = 40 0.82 0.47 

ShallowRandomForestRegressor() 
max_depth = 5, max_leaf_nodes = 

102, min_samples_split = 50 
0.82 0.47 

Table 6. Regression Results from 2Q Taxi Time Training Data (Jul-Sep 2022, IAH) 

 

 

Estimator 
IAH – June 2022 EWR – June 2022 

R² RMSE R² RMSE 

LinearRegressor() 0.56 0.74 0.20 0.94 

ElasticNetRegressor() 0.40 0.92 -0.09 1.10 

KNeighborsRegressor() 0.69 0.62 0.22 0.93 

DecisionTreeRegressor() 0.74 0.57 0.16 0.97 

RandomForestRegressor() 0.75 0.55 0.18 0.95 

ShallowDecisionTreeRegressor() 0.74 0.57 0.15 0.98 

ShallowRandomForestRegressor() 0.76 0.54 0.18 0.96 

Table 7. Regression Prediction Results on 2Q Taxi Time Test Data from IAH and EWR (June 

2022) 

 

Linear Regressor on 2Q Taxi Time Data 

Departure_Indicator Distance Angle Sum nArrOut nArrIn 
Intercept 

0 1.79 -0.16 -0.09 -0.24 

nDepOut nDepIn Temperature Wind Speed Visibility 
2.38 

-4.51 -0.20 -0.43 -0.10 -0.20 

Table 8. Coefficients for Linear Regressor on 2Q Taxi Time Data 
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Figure 6a. Shallow Decision Tree Regressor on 2Q Taxi Times 

 

 

 

Figure 6b. Detail (first three levels) of Shallow Decision Tree Regressor on 2Q Taxi Times 

 



 15 

 

Figure 7. Sample Optimization Output with Literature Cost Ratio 

 

 

Figure 8. Sample Optimization Output with 5:1 Augmented Cost Ratio 
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IV. Discussion 
 

A. Total Taxi Time Analysis 

The most interpretable regressor is the linear model, the coefficients of which are listed in 

Table 5. In the total taxi time regression, the departure indicator variable holds the most sway, as 

taxi-out times are significantly greater than that of taxi-in times. Next, distance, nArrIn, and 

nDepOut add to total taxi times as their values increase, since additional distance and/or 

congestion will yield greater times. Several other predictor variables do not meaningfully 

contribute to the linear regression, although as expected, the most inversely related variable is 

visibility (taxi time increase with visibility decrease). 

In terms of R², while the models trained on the three months of IAH data perform 

similarly on the June IAH dataset, the June EWR shows much less correlation across the same 

predictor variables in the trained models, as well as resulting in a higher RMSE. In this manner, 

none of the seven models offered favorable performance on EWR after being trained on IAH 

data, and hence for total taxi time, denies the hypothesis of prediction across geometries solely 

using one training set. The best estimator is the random forest for the IAH training dataset and 

the June EWR dataset, but is slightly edged out by the shallow decision tree regressor in testing 

on the June IAH dataset. The depth and multiple estimator averaging of the random forest yields 

low error values, and one such decision tree happens to perform marginally better on the June 

IAH data, signifying the effectiveness of the tree-type regressor for predicting total taxi time.  

  

B. 2Q Taxi Time Analysis 

After removing some of the variability due to the complex queuing behavior, 

performance on predicting the 2Q taxi times yielded much more promising results than the total 

taxi times. By approximating only the movement to the back of the queue, the predictor variables 

were able to explain up to 83%, 76%, and 22% of the variance in the July-Sept IAH training 

dataset, June IAH test dataset, and June EWR test dataset, respectively. While these models 

objectively perform well at IAH, it could be argued that they also make good predictions on the 

EWR data given the small sample size (n<10,000) of only a month’s worth of data and the 

inherent variability in 2Q taxi times. While the RMSE is significantly higher for both training 

and testing datasets than in predicting total taxi times, the R² performance shows real promise. 

Here again, the random forest regressor dominates R² performance for both the IAH training and 

test datasets, but the k-nearest neighbors regressor maximizes results for the June EWR test set. 

The random forest for June EWR still yields an R² comparable to this k-neighbors regressor, 

which most likely is the case due to the small sample size of the EWR dataset. 

To investigate the influence of the predictor variables on predicting 2Q times, the linear 

regression coefficients can again be analyzed. The departure indicator does not play a role, since 

it has already been filtered out for this analysis. True to their influence in Equation 6, nDepOut 

and distance carry the most magnitude in the 2Q prediction, and exert their contrasting influence 

on the 2Q predictions as prescribed in Equation 6 being fed into Equation 4. The other variables 

are not significant in this regression to the extent of the aforementioned two. To further delve 

into the predictor variables’ influence, the shallow decision tree classifier should also be 

examined (Figures 6a and 6b). For total taxi times, the expected first bifurcation is on the type of 

operation, with taxi-out times much higher than taxi-in times. However, having already filtered 
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down to only departures, the parent node of this tree becomes: nDepOut, followed by a second 

level also split on the nDepOut value. This only further speaks to the gravitas of the nDepOut 

variable in the choice of formulation for the 2Q calculation. The tree continues with the third 

level splitting primarily on distance, and continuing bifurcations on mostly these two variables. 

Of the 31 branch nodes in the shallow decision tree, these two variables account for 30 nodes, 

the only other variable being angle sum (a relative of the distance variable). This reaffirms Wang 

et al.’s feature reduction as having departure indicator, distance, and nDepOut as the three 

predictor variables which explain the most variance in taxi times. 

Beyond interpretability and the discreteness of the model, the decision tree regressor also 

poses another benefit for the eventual optimization effort. Since the prediction determines the 

mean of the 2Q log-normal distribution, and the RMSE of the model determines the standard 

deviation, the non-tree models are relegated to using only one standard deviation across all 

predictions from that model within the optimization framework. Within the decision tree and 

random forest regressors, however, the RMSE is unique to each leaf node at the bottom of the 

tree. For the shallow decision tree regressor then, there are 32 different RMSE’s to implement 

within the “pushback problem” optimization, and hence could capture a more accurate optimum 

pushback interval against the 2Q taxi time distribution. 

 

C. Optimization Sensitivity 

Since the optimal pushback interval and rates are determined by the input distribution and 

cost functions, it is also sensitive to changes in those inputs. For now, this research presents a 

single cost ratio based on literature values of type A and B costs, but these costs are not static and 

can change on small timescales based on the decisions of the airport, airlines, and ATC. From the 

difference between the sample optimization outputs of Figures 7 and 8, one can see the shift in 

optimal policy due to the increase in runway underutilization costs. By simply inputting the cost 

ratio to the optimization formulation, easy tweaks can be made based on user preference, the 

sensitivity to which will be further quantitatively explored. 

 

D. Challenges/Limitations 

 Several challenges arose in the process of both the predictive model and optimization, 

mainly stemming from the lack of available data. With limited historical data to train on, the 

models may not have performed as well as if they were tuned and tested on larger batches of 

data. The cross-validation was used to amplify the available training data to tune the model 

parameters, but the same technique could not be used to augment the testing dataset. 

Limitations of the regression arise from the simplifications made in both the predictor 

variables and target variable. For the distance measurements, the approximation of runway 

threshold to concourse is not truly representative of the actual taxi path, and variations to take 

longer taxi paths are common on a congested airfield. Additionally, there is no variable to 

explain the delays in taxi time from crossing a runway. In some geometries, runway crossings are 

necessitated, and whether crossing at the threshold or the middle, this crossing must not occur 

until the runway is clear. Deicing operations are neglected here, and arrival holds until the gate is 

available are also not captured within this model due to the simplicity of the provided data. 

The optimization is limited in nature as it is not tightly constrained. Dependent on 

varying cost functions and the result of multiple stochastic predictions, the 2Q taxi time 

prediction is subject to significant variation. Across a 15-minute window, the diverse optimal taxi 
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times may directly conflict, or even simply even out to a value which doesn’t achieve an 

optimum for any individual plane or airfield as a whole. 

 

E. Future Work 

Hence, future work will go into creating a proof-of-concept of the pushback control 

algorithm that results from such optimization. While the 2Q taxi times have been predicted with 

sufficient accuracy, converting the resulting theoretical optimal 2Q taxi times into practice via 

ATC ground control presents a significant hurdle. Once implemented via simulation, the 

pushback strategy will be evaluated to determine the cost savings of this simpler computational 

model against other pushback strategies like N-control and PRC8. The implementation of such 

optimization measures provides benefits to airlines and the NAS as a whole via reduced 

delays and fuel costs by balancing their total taxiing costs. 

 

V. Conclusion 
 

 In conclusion, more accurate taxi time predictions are extremely valuable in increasing 

the efficiency of commercial aviation and reducing costs associated with delays. Machine 

learning provides a framework to pull in historical data about the taxi times and their correlated 

parameters, and make these future predictions with higher precision. After training these machine 

learning models on one airport, there is some tractability across airfields in model performance, 

specifically within identifying the taxi time to the end of the departure queue. The favorable 

performance of these models to reduce error in taxi time predictions is encouraging and provides 

a solid basis for continuing work on minimizing taxi times on the airfield. Additionally, the 

variability in these “2Q” taxi times allows for optimization of costs across this uncertainty, which 

can in turn inform a controlled pushback strategy for taxiing-out aircraft. While still at a 

theoretical level, the simplicity of using a lower-fidelity framework of the “newsboy problem” 

may allow for greater tractability across airfield geometries than existing methods. 
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Appendix I: Code Repository 
 
https://github.com/mattbrune/FAADataChallenge 

 

  

https://github.com/mattbrune/FAADataChallenge
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Appendix II: Derivation of Log-Normal Pushback Problem Optimization 
 

 


