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Executive Summary 

This project sought to research machine learning methods that could be used to create a 

modernized Flight Risk Assessment Tool (FRAT). The tool could be made available to General 

Aviation (GA) pilots, which could increase pre-flight hazard identification and subsequently 

decrease accident risk and improve safety for the GA community. This would be an improvement 

on existing FRATs through the incorporation of predictive modeling, developed through research 

on historical accident data, utilizing algorithms that predict a pre-defined risk category for a given 

flight profile. Data was sourced from the National Transportation Safety Board (NTSB) to include 

40 years of aircraft accident and incident information. The models evaluated during this project 

were specifically designed for pre-flight risk assessment and, as such, utilized only information 

available during pre-flight analysis. This data is similar to topics covered in legacy FRAT tools 

and the “Pilot, Aircraft, enVironment, and External pressures” (PAVE) checklist for hazard 

identification. The models used in this project did not consider pilot errors, lapse of judgment, air 

traffic controller errors, other in-flight human errors, or mechanical component failure anomalies 

as those data points are not known prior to takeoff. The models explored showed the ability to 

predict risk categories for flight profiles based on pattern recognition through the classification of 

historical accident/incident records and hazard reports and showed the potential to be more robust 

than legacy FRATs with several models achieving moderately high accuracy in predicting risk 

categories. This method of utilizing a model to predict the risk category for the flight reduces pilot-

induced bias, decreasing the likelihood that a pilot may not properly identify hazards, or be 

overconfident in their abilities. This modern application of risk analysis could be superior to legacy 

tools as it is capable of: 1) continuously updating risk profiles based on additional data provided 

by each flight record, 2) identifying a risk that the pilot may otherwise not identify, and 3) 

providing a customized a risk score based on a specific flight profile.   
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Problem Statement and Background 

Prior to every flight, it is important that a pilot identify hazards, assess risks, and mitigate 

risks associated with a given flight profile. They should consider many factors before determining 

whether to fly, such as current and forecasted weather, personal expertise, familiarity with 

departure and destination airport, currency and proficiency, hours in aircraft model, etc. The 

Federal Aviation Administration (FAA) General Aviation Joint Steering Committee published a 

fact sheet describing the use of Flight Risk Assessment Tools, which enables proactive hazard 

identification prior to flights. A pilot with the FAA Safety Team’s (FAAST) FRAT can produce a 

risk score to make the decision on whether to fly and which hazards to mitigate (General Aviation 

Joint Steering Committee, n.d.). This project sought to improve upon this tool by researching and 

testing predictive models that could compare planned flight profiles to historical records of 

accidents, incidents, and flight hazards to identify potential hazards a pilot might otherwise not 

identify or even be aware of. This project utilized advanced machine learning algorithms to 

examine historical flight accidents and incident data to determine risk categories for flights. For 

each flight, risk categories were predicted based on outcome severity.  

The FAA described the process for conducting risk assessments in its Risk Management 

Handbook. Reviewing the PAVE checklist allows a pilot to deliberately assess areas of concern 

during preflight planning. This acronym describes the following: pilot, aircraft, environment, and 

external pressures. The “pilot” portion of this checklist generally includes a self-assessment 

including a subjective evaluation of a pilot’s “experience, currency, physical, and emotional 

condition” (Risk Management Handbook, 2009, p. 3-3). The models developed in this project 

include a quantitative evaluation of the pilot’s experience based on available flight hour metrics. 

Future work might include physical evaluation via smart wearable technology integrated with pre-

flight planning software, or the utilization of surveys to gather data. This project incorporated the 

“aircraft” and “environment” areas of risk assessment with the available historical accident, airport, 

and weather data. While there are other application-based FRAT tools available, there are not 

currently any known tools that utilize predictive models to predict risk categories for flights based 

on historical accident and incident data.  

 Expanding FRAT accessibility and effectiveness was worth pursuing due to the heavy cost 

of lapses in pilot judgment and poor preflight planning. According to Robert Wright’s article in 

Aviation Safety Magazine, “poor risk management was a root cause of nearly 50 percent of the 

fatal business aircraft accidents” of those he analyzed as a part of his research (2018, para. 13). 

According to Boyd’s 2017 literature review of safety in GA, civilian aviation operations excluding 

paid passenger transport, accounts for 94% of civilian aviation fatalities (p. 657). Boyd goes on to 

discuss the financial cost of these accidents, describing a loss of $1.6-4.6 billion in expenses 

“associated with injury (inclusive of hospital costs) and/or loss of life, accident investigations, loss 

of pay with a fatal accident, and loss of the aircraft” (2017, para. 2). This clearly illustrates the 

need for improved, accessible, and effective preflight risk management tools within GA.  

 Many studies have examined what might lead to an increase in risk for a pilot. Bazargan & 

Guzhva (2011) compare the effect of gender, age, and experience on a pilot’s likelihood to be 

involved in an accident in a study of over 40,000 accidents from 1982-2002 (see Figure 2). They 

found that age and gender do not appear to affect pilot error up to the age of 60. They also suggest 

that more experienced pilots are less likely to exhibit pilot errors leading to accidents. Fultz & 

Ashley discuss the degree to which weather contributes to accident fatality in GA accidents. They 

state that 60% of fatal accidents occurred while flying in instrument meteorological conditions 
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(IMC), most frequently “between October and April, on weekends, in early morning and evening 

periods, and along the West Coast, Colorado Rockies, Appalachian Mountains, and the Northeast” 

(2016, p. 291). Boyd (2017) describes IMC as increasing the likelihood of accidents by requiring 

a pilot to control the aircraft by reference to instruments in the absence of outside visual cues. 

Though only 9% of general aviation mishaps occur during these conditions, they account for a 

significant portion of fatalities. Additional factors which Boyd discusses as increasing the 

likelihood of an accident in GA are geographic location (see Figure 3), planned flight distance, 

and time of day. Those flights taking place in mountainous areas, with a longer flight distance, or 

conducted at night carry a significantly higher likelihood of fatal outcomes (para. 7-8).  

 

Solution Definition 

The solution for this project was defined as a modernized preflight risk assessment tool 

that is specifically for Part 91 pilots and is meant to increase accessibility, increase hazard 

identification, and increase safety records in the GA community. The scope of this project was 

only to conduct the foundational research required to validate the concept, upon which further 

testing, validation, and applications can be built in the future. The modernized preflight risk 

assessment tool should utilize advanced machine learning and artificial intelligence solutions, as 

detailed in this report, to predict risk classification scores utilizing data entered by a pilot regarding 

their proposed flight profile. This project used historical NTSB accident and incident data that was 

hand-labeled based on event outcome severity to train different machine learning models. Since 

the tool is for preflight risk assessment, only data available to a pilot during preflight planning was 

used to train predictive classification models.   

This modernized FRAT solves many issues with traditional tools and worksheets. 

Limitations of FRATs currently available to pilots include poor accessibility, incomplete or 

subjective survey questions, the excessive time required to complete worksheets and lack of 

regulation requiring usage. The FAAST FRAT is neither user-friendly nor easy to find, download, 

or utilize. While the manual completion of a FRAT can be a way of ensuring a pilot seriously 

examines criteria relevant to pre-flight risk, this process is only helpful if the pilot takes time to 

deliberately conduct a flight risk assessment. Wright describes the shortcomings of traditional 

FRATs in his previously mentioned article, asserting that a) they do not consider the probability 

of a certain hazard occurring, b) they allow pilot bias and overconfidence to mark higher risk 

events as lower risk, and c) they tend to be incomplete in their evaluation criteria (2018). Wright 

goes on to discuss a shortcoming in the typically included threshold for go/no-go determination. 

He states that numerical risk assessment should consider outcome severity and probability of 

occurrence (2018).  

This project proposed solutions to many of these shortfalls of traditional FRATs in the 

following ways. First, accessibility is improved if the risk prediction model is integrated into a 

preflight planning program or incorporated into an accessible web application. Second, the 

predictive model reduces potential bias from the pilot or tendencies to adjust input in manually 

completed FRATs to obtain lower risk scores (keeping in mind there is bias in predictive models). 

This is done through a comparison of the flight profile against similar historical flight profile data 

producing an objective risk score and identifying hazards that the pilot could then choose to 

mitigate. Third, it considers the severity of hazards. The probability of occurrence was not utilized 

or calculated in this project due to a lack of non-accident/incident-related flight data. Finally, this 
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project provides the pilot an opportunity to review and mitigate hazards that they otherwise may 

have missed with incomplete tools or a rushed analysis.  

 

Methodology 

Figure 1 summarizes the methodology and workflow for the project. In general, a standard 

extract, transform, and load workflow was used to collect raw data, manipulate it to a useful form, 

and load it into a flat file for ingestion into predictive machine learning models. Several standard 

practices were utilized as part of the methodology. After data collection, data cleansing was 

conducted. Data cleansing included correcting erroneous data, standardizing text data, altering data 

types, and handling missing values, amongst others. Once the data was cleaned, records were 

labeled for classification purposes. Data distributions were analyzed and assessed for resampling. 

Multiple different models were run, including XGBoost, random forest, Bidirectional Encoder 

Representations from Transformers (BERT), and a feed-forward neural network (FFNN). Each 

model was run initially as a baseline, followed by multiple iterations and tests on manipulating 

data inputs, hyperparameters, and sample sizes. Once a suitable result was obtained, n-fold cross-

validation testing was conducted to ensure models were not overfitting and could generalize well.   
 

Figure 1 

Workflow Diagram Utilized in FRAT Project  

 
 

Data Extraction and Collection 

The primary data source was the continuous set of incident and accident records compiled 

from NTSB data sets (National Transportation Safety Board, 2021). NTSB data consists of 

accidents and incidents that were investigated and reported on by the National Transportation 

Safety Board, including over 40 years of accident and incident records dating back to 1980. Over 

the course of the project, multiple other data sources were collected, cleaned, and evaluated for 

suitability and modeling.  

The records included in the various data sets were initially examined to explore potential 

trends across events. When examining the NTSB data set, a few trends were noted. First, it 
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appeared there was an increase in event occurrences across the summer months (see Figure 2). 

Second, Figure 3 shows that most events occurred at elevations below 1000 feet. After examining 

the data as a density plot across the continental United States, high-density accident clusters were 

seen in multiple regions (See Figure 3). To truly evaluate these trends, it would be necessary to 

incorporate information from all GA flights to calculate rates by which to compare disparate 

geographic locations. This limitation is discussed in further detail in the Conclusions section.  

 

Figure 2 

Event Occurrence by Month (NTSB Data) 

 
 

Figure 3 

Event Occurrence by Airport Elevation (NTSB Data) 
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Figure 4 

Heatmap of NTSB General Aviation Accidents 2008-2022 

 
Note. This heat map illustrates the distribution of accident records in the NTSB data set. High-density areas include 

metropolitan areas, mountainous areas, and the eastern and western seaboard where aviation traffic is high. It is 

important to understand how the geographic area affects flight risk. 

 

Figure 5 

Event Occurrence by Light Conditions (NTSB Data) 

 
 

Data Transformation 

Standardizing and normalizing data for this project was a very complex task. Much of the 

information contained in the NTSB records was a heterogeneous mixture of text-based nominal 

and ordinal categorical data, and discrete and continuous numeric data. Basic cleaning tasks 

included standardizing naming conventions, handling missing values, filtering data, joining data, 

deduplicating event records, and ensuring consistency throughout the data set.  

Filtering required for this project began with ensuring data only included GA records. The 

data originally contained records from all Federal Aviation Regulation (FAR) parts. As our 

research was focused on improving safety for GA, records from Parts 121, 125, and 129 were 

removed as these commercial air carrier flight profiles are vastly different from those of Part 91 

and would not necessarily provide relevant data to the model. 
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Accident causal factors were analyzed, and the following factors were found to be present 

in the data:  

 

Table 1 

Causal Factors for Incidents in NTSB and ASRS Data sets 

Causal Factor Description of Events Included 

Weather Unintentional flight into IMC, lightning strikes, downdrafts, precipitation, 

icing, hail, strong or gusty winds, etc. 

Environmental Non-weather-related anomalies include controlled flight into terrain (CFIT), 

elevation, failure to avoid obstructions, inadequate runway, icy or wet 

runway, bird strikes, etc. 

Pilot Related Information about the pilot and their craft. This data includes flight time and 

aircraft information and includes wrong control input, loss of control, lack of 

situational awareness, human error, failure to follow assigned instructions, 

etc. 

Aircraft Component malfunction, engine failure, loss of power, power available 

exceeding power required 

 

Accident records were not filtered based on causal factors. It is important to paint a picture 

of the environment in which any accident or incident occurs to identify patterns that lead to 

accidents, regardless of the causal factor. Primary and secondary causal factors tend to be identified 

as factors that occur at or around the time of the event. For example, an engine failure might be 

cited as the primary cause of a crash, and a secondary cause might be cited as an oil leak. What 

may not be captured explicitly is that the engine maintenance schedule was not followed properly, 

and the pilot did not conduct proper preflight records inspection causing the pilot not to notice that 

an oil seal exceeded its lifespan and was susceptible to failure. This example accident very well 

could have been mitigated through pre-flight risk assessment.  

Once the data was cleaned and filtered, a risk category was assigned to each record, based 

on the result of each accident or incident. Each record contained an injury field and an aircraft 

damage field with categories of none, minor, severe, or fatal/destroyed. The risk labeling scheme 

is as follows:  

 

Table 2 

Proposed Risk Categories 

Risk Score Consequence Level Description 

0 Low Flight resulted in an incident or accident with no aircraft 

damage AND no minor injury. 

1 Medium Flight resulted in an incident or accident with either 

minor aircraft damage OR minor injury, AND no 

fatality. 

2 High Flight resulted in an incident or accident with either 

severe aircraft damage OR severe injury, AND no 

fatality. 

3 Catastrophic Flight resulted in an incident or accident with either 

fatality or destruction of the aircraft.  
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Note: When comparing aircraft damage and injury, the highest of the two dictates the classification. 

For example, a record with minor aircraft damage and severe injury would be classified as category 

2, High. Numerical risk scores are only utilized for modeling purposes, and it is preferred that an 

end user see an output of “Low” or “High” rather than 0 or 2. The risk score of 0 does not imply a 

no-risk flight.  

 

Figure 6 

Histogram of Risk Classification Labels 

 
The data set was heavily skewed toward those records which resulted in higher risk 

categories. This stands to reason, as the data was sourced from the NTSB data set including 

incident data as previously described. Flights conducted without incident or with only minimal 

negative outcome would either not be included or only included on a limited basis if the event 

triggered an NTSB investigation (see Figure 6). An imbalanced data set is not conducive to good 

machine learning results because the models would tend to overfit on a majority class. This 

problem is solved through resampling techniques to balance the data set. To rebalance the labeled 

data set, a combination of under and oversampling techniques was utilized. Those records labeled 

as risk values 2 (the majority class) were randomly undersampled to reduce their count, and those 

labeled as 0 or 1 (minority classes) were oversampled by random duplication to increase their 

count. While these techniques can introduce bias into the data, it is necessary to prevent overfitting 

across all categories and increase accuracy and result scores appropriately. Further discussion can 

be found in the conclusions section of this report. Figure 7 shows the distribution of labeled classes 

following the rebalancing of the labeled data set, resulting in records between 10,000 and 12,000 

for all labels.  
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Figure 7 

Histogram of Risk Classification Labels for Balanced Data set 

 
Modeling 

To predict risk categories using pre-flight data, machine learning algorithms were used to 

classify records in the data set. Multiple models were implemented and tested with the intent of 

determining which might predict risk categories most accurately. To start, features were selected 

for inclusion in the model. Once features were selected, data was manipulated into usable formats 

specific to each model’s specifications. Only data available to pilots during pre-flight planning 

was included in the models to keep the model aligned with the intent of the project. Retained 

features are outlined Table 3.   
 

Table 3 

Feature selection for predictive modeling 
Pilot Data Aircraft Data Environment Data Weather Data 

Total Flight Hours Aircraft Make Dept/Dest Airport Temperature / Dewpoint 

Actual Instrument Time Aircraft Model Airport Location Wind Direction / Speed 

Flight Hours in Make Airframe Hours Airport Elevation Meteorological conditions 

Flight Hours at Night Certified Max Gross Weight Departure Time Ceilings 

Rotary Wing Flight Hours Airframe Inspection Timeline Runway length Visibility 

Single Engine Flight Hours Engine hours Runway width Weather Observation Time 

Multi-Engine Flight Hours No. Engines Day of week Light Conditions 

Simulated Instrument Hours Engine Manufacturer Month Wind Gust Speed 

Note.  These features contain information that is available and typically used during pre-flight 

planning.  

 

XGBoost Model (Baseline) 

 XGBoost was selected as the baseline classification model for this project for the following 

reasons. First, no clear patterns presented themselves in the data in terms of correlation. Second, 
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the data was a mix of numeric data and categorical text data. Third, the data set had a significant 

number of missing values. Boosted decision tree models are well-equipped to handle the 

characteristics of the data set. Specifically, the Histogram-based Gradient Boosting Classification 

Tree from the SciKit Learn library was utilized (Pedregosa, 2011).  

 The process for training the model included final data preparation, running a baseline 

model on the imbalanced data set, then training subsequent models to test the effects of feature 

selection, data set balancing, hyperparameter tuning, and labeling schemes. Once a final 

configuration was selected, based on evaluation metrics such as confusion matrix, F1 score, 

precision, accuracy, and recall, a ten-fold cross-validation test was run to check for overfitting and 

generalization.  

 To establish a baseline, the initial model was trained on the original imbalanced data set. 

This model showed a modest ability to accurately predict risk categories for accidents and 

incidents producing an average F1 score of 0.76. With a baseline established, multiple follow-on 

tests were conducted. The process and results are enumerated below. The F1 scores represented in 

the “Results” are a weighted average of F1 scores for each class for easy comparison between tests. 

More detailed results are included in the appendix.  

 

Table 4 

XGBoost modeling results 

Test Iteration Configuration F1 Score Results 

Baseline Imbalanced 0.76 

1 Balanced 0.85 

2 Category reduction, imbalanced 0.77 

3 Category reduction, balanced 0.79 

4 Normalized, balanced 0.84 

5 Category reduction, normalized, balanced 0.79 

6 10-fold cross-validation, balanced* 0.85 

Note: * indicates the preferred model configuration 

 

 Referencing Table 4 above, test 1 involved training the model on the balanced data set. 

This showed an overall increase in performance and a tendency for the model to “miss high”. In 

other words when the model was wrong, it tended to predict a higher risk category than the true 

category, which is a favorable characteristic. Test 2 involved category reduction to observe the 

effect that different categories had on the results. In this test, risk categories 0 and 1 were combined 

into a single risk category, in the original imbalanced data set. The results of this test showed a 

decrease in overall performance.  Test 3 expanded on test 2 and maintained the category reduction, 

but this time on the balanced data set. Here, there was a slight increase in performance over test 1. 

This observation demonstrates that having more categories and a balanced data set allows the 

model to discriminate between higher risk (2 and 3) and lower risk (0 and 1) categories more 

accurately. Tests 4 and 5 used similar configurations as tests 2 and 3 respectively, with the 

exception that normalization was implemented in tests 4 and 5. There were no appreciable 

differences in performance with normalization.   

Overall, test iteration 6 provided the best results. This test was conducted with four 

category labels, a balanced data set, unnormalized data, and default hyperparameter settings for 

the model. Observing the individual label F1 scores as well as the confusion matrix showed that 

overfitting occurred on labels one and two. This is expected due to the method by which the data 
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set was balanced through over-sampling. Although the low-risk labels were overfitted, there was 

a positive benefit because it allows the model to reduce error when predicting high-level risk events.  

The 10-fold cross-validation results were very consistent through each iteration of the 

validation tests. This provided evidence that the model should be able to generalize new data with 

similar accuracy. Another important factor is how the model makes errors. We observed that when 

the model incorrectly classifies a record, it tends to predict a higher risk category than the true 

classification, rather than a lower risk category. This is an important characteristic in risk 

prediction because it means the model is making more conservative estimations. If the model is 

wrong, it is better to err on the high-risk side of the scale. 

 

Random Forest Model 

Random Forest Classification is another ensemble model that was utilized due to its 

flexibility in handling missing values, large data sets, and high dimensionality (Johnston, & 

Mathur, I., 2019). Random forest uses bootstrap aggregating or bagging to avoid overfitting and 

decreasing variance (Bruce et al., 2020). It produces a collection of decision trees and predicts the 

output of the majority vote. 

The process for training the model echoed the method of training and testing the XGBoost 

model. This included data preparation, producing a baseline model, and observing multiple models 

using different methods including rebalancing the data set and hyperparameter tuning. The best 

result was selected based on the F1 score and the confusion matrix. The model was initialized 

using the original, imbalanced data set using the parameter default values of the random forest 

classifier in the SciKit Learn library (Pedregosa et al., 2011). The baseline random forest model 

returned a fair score of 0.75. The data set was then balanced using similar over and under-sampling 

methods to the previous model. The F1 score for the balanced data set produced a better F1 score 

of 0.85. 

Next, hyperparameter tuning was performed to evaluate the best values in the model to 

improve the performance. This procedure included performing a 10-fold cross-validation to avoid 

overfitting and ensure generalization (Bruce et al., 2020). Table 5 below displays the results of the 

three different methods. 

 

Table 5 

Random Forest Modeling Results 

Test Iteration  Configuration  F1 Score Results  

Baseline  Imbalanced  0.75  

1 Balanced 0.85 

2  10-fold cross validation, balanced*  0.86 

Note: * indicates the preferred model configuration 

 

The 10-fold cross validation, balanced model obtained the best results with an average F1 

score of 0.86. The balanced configuration score in test iteration 1 is only scored .01 less. This 

implies the best result from hyperparameter tuning did not greatly improve the performance of the 

balanced model. However, observing the confusion matrix showed that the model correctly 

predicted each risk most of the time. While there were more values misclassified for the two 

highest risks, it is likely to predict one of the last two highest risk categories, rather than the first 
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two lowest risk classifications. This again was consistent with the results from the XGBoost 

models.  

 

Feed-Forward Neural Network 

 When preprocessing the data set for training a neural network, there were two issues to be 

addressed. First, the data set included columns with both categorical and numerical data as 

discussed above. To correct for this, the categorical values were encoded into numerical values for 

model input. Second, the feed-forward neural network model that was selected for this project was 

not able to process missing values. Previous research had been published on different methods 

with which to address this issue, some focusing on the imputation of these values, and others 

accounting for the uncertainty inherent in missing data by including a probability density 

distribution in the place of any missing data points (Smieja et al., 2018).  

In the interest of time, this project chose to implement the former method, imputing missing 

values, by using the Scikit Learn Multivariate feature imputation class IterativeImputer which 

“models the missing values as a function of other features and uses that estimate for imputation” 

(Pedregosa, 2011). At the point of pre-processing for the neural network, all categorical values had 

been encoded into numerical values, so this was possible. It is worth noting here that missing 

values were not imputed in the XGBoost or random forest models because those models are 

equipped to handle missing values, and imputation is another way to introduce bias in the training 

data. There are issues with imputation of missing values through the implemented method, as the 

numerical features convey a meaning which might be lost through imputation. For instance, if a 

flight record includes information from a particular airport, with a particular airplane and engine 

manufacturer, and particular weather conditions but the lighting condition is missing, there is a 

possibility that the lighting conditions would be imputed incorrectly, therefore skewing the 

resulting output of the model. Additionally, late in the project it was discovered that the imputation 

injected bias back into the model by re-skewing the dataset to elevated risk classification values.   

 The FFNN utilized three dense layers: two hidden layers with the rectified linear (ReLU) 

activation function and one output layer with the Softmax activation function allowing for the 

output to provide a probability distribution over the classes (Bala, n.d.). The ReLU activation 

function is the most widely used, and the Softmax activation function is typically utilized for a 

multi-class classification problem such as this.  

Like the procedure outlined above for the XGBoost model, the initial FFNN was trained 

on the original imbalanced data set, resulting in a rather low average F1 score of 0.60, indicating 

that it only had a slight ability to accurately predict risk categories for accidents and incidents. 

With a baseline established, multiple tests were conducted, involving the imputation of missing 

values through different methods and the utilization of a balanced or imbalanced label set. The 

process and results are enumerated below in Table 6 with F1 scores utilized in the same manner 

as Table 4. All values included in Table 6 ultimately are based on an imbalanced data set due to 

the imputation issue described above. More detailed results are included in the appendix.  

 

Table 6 

Neural Network modeling results 

Test Iteration Configuration F1 Score Results 

Baseline Imbalanced, whole data set imputation 0.60 

1 Imbalanced, label-based imputation 0.71 
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2 Imbalanced, label-based imputation 0.96 

3 Imbalanced, label-based imputation, 10-fold cross 

validated using KerasClassifier  

0.93 

4 Imbalanced, label-based imputation, 10-fold cross 

validated using StratifiedKFold* 

0.97 

5 Same as 2 following tuning of hyperparameters 0.94 

   

Note: * indicates the preferred model configuration 

 

 The FFNN results following imputation returned average F1 scores in the .90-.97 range, 

though this should be evaluated with caution. Ultimately the highest-performing method was the 

10-fold cross-validation method with the StratifiedKFold implementation using stratified sampling 

rather than random in order to ensure that every iteration samples from each of the classifications 

performing slightly better than the simpler non-cross validated model (GeeksforGeeks, 2023). 

Experiment 5 shows that tuning of hyperparameters of the model resulted in a slightly less accurate 

output than using the default. Hyperparameters tested through this process were the activation and 

optimizer methods for the neural network, results indicating that the utilized optimizer was 

optimal; our model utilized the Adam optimizer, which is “a stochastic gradient descent method 

that is based on adaptive estimation of first-order and second-order moments” (Team, n.d.). The 

tuning indicated that the ReLU activation method used should be switched to Sigmoid, though this 

is typically used for binary classification problems (Choubey, 2023). This might account for a 

decrease in performance.  

 

Bidirectional Encoder Representations from Transformer (BERT) for Classification 

 Another approach taken to model the data was to use a BERT model for multi-class 

classification. This approach was taken to understand if better performance over the benchmark 

and the feed-forward neural network could be obtained by utilizing advanced neural networks. The 

process for modeling the data with BERT was based on the research with similarly structured data 

by Chris McCormick (McCormick, 2021), and utilized models from the HuggingFace library 

(HuggingFace, n.d.) and Pytorch libraries (Paszke et al, 2019).  

The data set was first balanced using over and under-sampling techniques consistent with 

the methods used in the benchmark XGBoost models. Each attribute was taken out of the standard 

data frame structure and combined into one body of text for each record. Additional wording was 

inserted to provide the model with context for each feature. For example, a string of data like: “rdu 

1200 cessna” was transformed to “takeoff airport rdu takeoff time 1200 aircraft make cessna”. 

This mimics a corpus that is traditionally used in natural language processing. Additional 

experiments were run to measure the effect the additional context had on the results. After 

transforming the data into combined strings of text, each record was then tokenized and encoded. 

After tokenizing and encoding, the data set was split into training, testing, and validation sets. 

Hyperparameters for the model were set. Finally, the model was trained and evaluated.  

The evaluation method for this model was consistent with the baseline XGBoost models. 

F1, accuracy, precision, and recall were measured for each training and validation evolution with 

the BERT model. In addition to the evaluation metrics, training and validation loss were measured 

and plotted to check for overfitting. Due to heavy computation costs and training time, the BERT 

model was trained on two iterations each with a different configuration. Both iterations used 
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default hyperparameters and model configuration. The first iteration used the data set with 

additional context, the second iteration only used the raw data without additional context.  

 

Table 7 

BERT modeling results 

Test Iteration Configuration F1 Score Results 

1 Data with context 1.0 

2 Data without context 1.0 

 

 Both iterations of the BERT model produced perfect scores. This is concerning from an 

overfitting and data leakage perspective. Overfitting indicates that the model has memorized the 

data set and if presented with unseen information, would not accurately be able to label the data. 

To check for overfitting the training and validation loss was plotted for each epoch. A well-fit 

model should have training loss and validation loss decreasing with each epoch and converging 

towards each other on each epoch. An overfit model would show validation loss increasing while 

training loss decreases with each epoch. The loss curves shown below in Figure 7 are from test 

iteration one and indicate that the BERT model has a good fit. This is a positive signal for the 

model.  

In conclusion, the perfect scores for the BERT model must be further scrutinized to ensure 

the model is not overfitting and there is no data leakage. This model should not be considered for 

inclusion in a production system until the cause of the perfect scores can be identified and tested. 

Although the model appears to have a good fit, more research needs to be conducted to ensure that 

the model can generalize. This should be done with new data that the model has not seen before. 

Caution should be exercised to ensure a bad model is not put into production.  

 

Figure 7  

BERT model training and validation loss curves 

 
 

Feature Importance 

After testing was complete, feature importance was analyzed for both the XGBoost Model 

and the FFNN as these both have simple methods for doing so. Of note for the XGBoost Model, 
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the top features used to make decisions on classification included various types of pilot flight hours, 

airframe hours, airport elevation, temperature, date, and location information. Evaluation of the 

features of the FFNN was done via both weight magnitude and gradient-based methods. The first 

evaluates the weights with which a feature influenced a network’s decision, while the gradient-

based method calculates the loss function gradients in respect to the input features (Theiler, 2022). 

Each indicated different features that are important to the classification performance of the model, 

though both were a mix of meteorological, event, and aircraft specific information among the 

highest scored features. Visualizations of feature importance for both models can be found in 

Appendices B and C.  

 

Conclusions 

 Overall, this project succeeded in solving the problem it initially set out to solve. Risk 

categories were identified, and models were trained with reasonable accuracy to predict those 

categories. Although reasonable outcomes were achieved, there is still much work that can be done 

to improve the foundational work. As it stands, the models presented in this project should not 

blindly be incorporated into a production-level application that predicts flight risk for pilots. First, 

additional work must be done to address the limitations described in the subsequent sections. 

Second, the work should be peer-reviewed to ensure the results are reproducible, and 

methodologies are validated.  

 

Model Comparison 

 Each model proposed, trained, and tested in this report has its own strengths and 

weaknesses. Overall, when selecting a superior model, it is important to weigh the strengths and 

weaknesses of each model and configuration to ensure poorly fit or heavily biased models are 

not utilized in a production environment. To summarize, all the models that were trained during 

this project showed some degree of ability to accurately predict risk categories.  

 XGBoost and random forest models showed very promising results with room for 

improvement. Overall, both the XGBoost and random forest models were considered the 

strongest performers but in terms of quality of result metrics. Model improvement can most 

likely be achieved by addressing some of the limitations in the next section. For example, if more 

data was available in the low-risk categories, like categories 0 and 1, there would be less 

requirement for balancing the data set through over and under-sampling. This should also reduce 

the overfitting characteristic of the model on the low-risk categories.  

The FFNN that was utilized showed high scores and results, but there were problems 

with imputation. After further evaluation the imputer injected too much bias and skewed both the 

data set distribution and the model output to the point where it almost always predicted risk 

category 2 exclusively. For these reasons, XGBoost and the random forest models are preferred 

over FFNN. Improved performance of FFNN models can be addressed through exploration of 

improved missing value imputation, the addition of unique low-risk category records, as well as 

expanding the data set in general as these models work better with larger data sets that are low in 

missing values. This would eliminate the need for heavy imputation.  

XGBoost and random forest models are preferred to neural networks in multi-class 

classification problems such as this one for a few reasons. Neural networks require larger data 

sets, and higher computational resources, and cannot process missing values. With a larger data 
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set and limited missing values, the neural network might become more desirable through future 

iterations of this project. Additionally, because they are simpler models, the XGBoost and 

random forest models are easier to manipulate, train, and validate than the neural networks 

explored here such as FFNN and BERT. 

The BERT model, although at first glance looks to be the best model based on F1 scores, 

should be considered the least desirable model to implement into a production application at the 

time of this report. This is because the model produced perfect scores and extremely minimal 

loss. This points to overfitting or data leakage, or a combination of the two. Due to the time and 

resource constraints on this project, it was not possible to identify and mitigate the reason for 

these scores, though this issue is still being investigated. This would be a good idea for future 

research because the other models utilized in this project showed promising results, perhaps 

BERT could outperform the other models if the problems are identified and appropriately solved.  

  

Limitations 

There are numerous limitations remaining hindering progress of this project, falling into 

two categories: data availability limitations, and model limitations.  

Regarding data availability limitations, it is important to note that the data set utilized for 

training these models only includes records from accident and incident NTSB databases. There is 

a difference in data output and quality between preflight planning data for a non-incident related 

flight and investigation data. Investigation data is collected by an investigator who did not plan 

the flight and is collecting data after an event occurred. Often, in the case of fatal events, the 

person who planned the flight is deceased and unable to provide the investigator with flight data. 

This is an opportunity for biased data collection on the part of the investigator or incomplete and 

missing data. Due to the inability to collect general aviation flight records, or pre-flight data from 

pilots for this project, modeling was limited to predicting risk categories only on accident and 

incident records. Therefore, the research presented in this report more appropriately answers the 

problem: given an accident or incident, predict the risk category for the event. If regular pre-

flight data were to be obtained and incorporated into modeling, new testing, and evaluation 

would be required for the new models. Adding this data would also reduce bias in the models 

and would allow for risk category prediction and risk probability prediction which would be very 

beneficial to the pilot.  

It is important to recognize that all models have limitations, and no model can predict 

reality all the time. Each of the models utilized in this project was limited in some way. 

Regarding the FFNN, the model could not handle missing values, and therefore missing values 

had to be imputed. This can inadvertently inject bias into the model in the way that the 

imputation algorithms are built through the artificial insertion of conditions which might not 

have been relevant to each flight. The BERT model’s primary limitation was that it is a very 

complex model to configure and train. Therefore, troubleshooting the model, in this case, trying 

to understand the reasons behind overfitting, became very difficult. The XGBoost and random 

forest models were limited because the data sets had to be balanced to increase the result scores. 

The methods by which the data set was balanced injected bias into the model because the low-

risk categories were duplicated almost 100x. This caused overfitting in those categories. 

Although overfitting is typically avoided, in the case of XGBoost, it was not completely 

detrimental to the results. This overfitting creates a bias in the model to predict higher risk 

categories when it incorrectly classifies a label. It is better to have a more conservative model, 
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than a model that incorrectly labels a high-risk flight as low-risk. Most of these limitations were 

addressed and overcome by utilizing a method of testing, evaluating, reconfiguring, and 

retesting, until a suitable solution was obtained, or performance could no longer be increased. 

Finally, the results were cross validated to ensure final scores were not anomalies.  

 

Future Model and Application Development 

For a modernized FRAT application to be successful it must be accessible, simple to use, fast, 

and accurate. A modernized FRAT can be developed and implemented through the following steps. 

First, since the FAA already owns and manages the source data (NTSB incident reports), a simple 

extract, transform, and load (ETL) pipeline can be developed to periodically update new incident 

and accident data, transform the data for model preparation, and load it to an existing data 

warehouse. Next, a programmed script can be implemented to train the model with new 

information as it is added. Then, the model would be put into production and connected to a 

modern web application.  

This interface would make the program accessible to pilots during preflight planning. Pilots 

should be able to set up accounts, where they can update their recent flight hours, their aircraft 

data, and their flight plan, so they do not have to input this data on each use of the application. 

Finally, the application would ask the pilot a series of questions to ensure all relevant features are 

available to the model to make a risk assessment prediction. After the pilot inputs the data 

requested by the application, the data is run against the recurrently trained machine learning 

algorithm and a risk score is produced with details highlighting which attributes lead to the 

elevated risk score calculation. This will alert the pilot to the most probabilistic and dangerous 

hazards present in each flight scenario, to which the pilot can apply the appropriate level of 

mitigation. One method for generating this output would be to run a K-Nearest Neighbor algorithm 

to identify the most similar flight records within the predicted risk category, and then extract the 

most common features from these records to indicate areas of potential risk mitigation. 

The best way to interface through which to implement this model is to incorporate it into 

preflight planning software such as ForeFlight or through a custom phone application to allow 

real-time risk analysis. Through such software, much of the required information would already 

be made available, such as the pilot’s historical flight data, the filed flight plan, and the current 

and forecasted weather based on the route. The ease of use and minimal pilot input required would 

save time and could improve the probability that a risk assessment is done in the first place.  

 Though the scope of this project only included foundational research into modeling risk 

and did not include application development, several areas for future development have been 

identified. Through the incorporation of this tool in preflight planning software, there is potential 

to integrate the use of health informatics via the integration of smartwatch data. Wingelaar-Jagt et 

al. (2021) examine the safety risks of fatigue in aviation in their Frontiers in Physiology publication, 

stating that it is an “important risk factor for aircraft incidents and accidents both in civil and 

military aviation. In the last two decades, it has been identified as the probable cause of 21–23% 

of major aviation [accident] investigations” (para. 3). A pilot might not be able to adequately judge 

their level of fatigue resulting from previous flights or other physiological issues, so wearable 

monitoring of physiological data could potentially enable a nonbiased assessment to be integrated 

into a predictive model. This would require a test group of pilots to wear such a device over a 

period to build an adequate data set, as well as further advancement in fatigue research. Adão 
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Martins et al. (2021) indicate that the currently available published literature does not indicate that 

this technology is ready.  

For this application to be accepted and widely used in the GA community, several 

efficiencies should be built into the application for ease of use. First, pilots could have profiles 

where aircraft data and pilot flight hour data are tracked automatically as previously mentioned. 

Second, the pilots could save flight plans in their profiles and the model would pull aircraft, airport, 

and flight path data from those flight plans. Finally, the pilot would be prompted to fill out any 

additional data the model does not have. All these features would make the risk assessment process 

accessible and efficient for the pilot. The faster and easier the application is to use, the more likely 

the pilot is to use the application and apply the risk assessment to their flight.  

 According to Shappel et al. (2010) in the 20 years proceeding their study nearly 40,000 GA 

“aircraft were involved in accidents, roughly 20% of which were fatal” (p. 1). According to Wright, 

most accidents can be traced back to preflight planning (2018). Due to the high cost of property 

and life, and the lack of an easily accessible and accurate FRAT tool, this project sought to fill a 

critical need for GA pilots. It is our hope that this research can be built upon and improved to 

create a modernized flight risk assessment tool that enables a more robust preflight planning 

culture in the general aviation community and improves hazard identification and mitigation, 

improving the safety of flight for all who use it. 
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Appendix A: Detailed Best Model Results 

 

XGBoost – Test Run 6 – 10-fold cross-validation on balanced data set 

Metric Class 0 Class 1 Class 2 Class 3 Average All Classes 

F1 0.99 0.98 0.71 0.69 0.85 

Precision 0.99 0.97 0.70 0.71 0.84 

Recall 1.0 1.0 0.72 0.68 0.85 

Random Forest – Test Run 2 – 10-fold cross-validation on balanced data set 

Metric Class 0 Class 1 Class 2 Class 3 Average All Classes 

F1 1.0 0.99 0.71 0.69 0.86 

Precision 1.0 1.0 0.75 0.65 0.85 

Recall 1.0 0.99 0.68 0.74 0.85 

Feed-Forward Neural Network – Test Run 4 – 10-fold stratified cross-validation on balanced 

data set using label-based imputation 

Metric Class 0 Class 1 Class 2 Class 3 Average All Classes 

F1 NC NC NC NC 0.97 

BERT – Test Run 1 – no context 

Metric Class 0 Class 1 Class 2 Class 3 Average All Classes 

F1 NC NC NC NC 1.0 

Precision NC NC NC NC 1.0 

Recall NC NC NC NC 1.0 

Note: NC = not calculated 
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Appendix B: XGBoost Supplemental Visualizations 
 

XGBoost Model Feature Importance:

 

This chart shows the top 15 most important features in the XGBoost decision trees. The top factors 

included various pilot flight hours, airframe hours, airport elevation, temperature, date, and 

location information.  
 

XGBoost Confusion Matrix:  

  

This is a sample of one of the confusion matrices 

that was produced in the output of the XGBoost 

10-fold cross-validation testing. The y-axis 

represents True labels, and the x-axis represents 

Predicted labels. Overall, there are nearly perfect 

predictions for labels 0 and 1. This is due to the 

oversampling techniques used. It can be observed 

that the model predicts high, which compensates 

for the overfitting in the low-risk classes.  
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Appendix C: Feedforward Neural Network Supplemental Visualizations 

FFNN Model Feature Importance: 

 

 

These charts shows the top 10 most important features to the neural network classification via 

either weight magnitude or gradient-based methods as described in the paper. The top factors 

included various meteorological, aircraft, and event specific (time/location) information. The 

“index” on the x axis refers to how the model is passing each record into the neural network, and 

as such can be ignored for feature importance evaluation.   

 

FFNN Confusion Matrix:  

 

This is a sample of the confusion matrix that was 

produced in the output of the FFNN 10-fold 

cross-validation testing. The y-axis represents 

True labels, and the x-axis represents Predicted 

labels. This confusion matrix shows the issue 

described in the model comparison section, with 

the classification predicted almost exclusively as 

label 2 due to a imbalanced training set.  
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