Proposal for a Modernized Flight Risk Assessment Tool for General Aviation Pre-Flight Planning *Category: Improve Aviation Safety*

Hunter Walden

Data Engineer Steampunk, Inc. Former USMC MV-22 Pilot M.S. Data Analytics Engineering, Student George Mason University

Kathleen Hill

Data Scientist Systems Planning and Analysis, Inc. M.S. Data Analytics Engineering, George Mason University

Dr. Isaac Gang

Project Advisor Associate Professor College of Engineering and Computing MS Data Analytics Program George Mason University

Chi Quinn

Business Intelligence Analyst American Society for Radiation Oncology M.S. Data Analytics Engineering, Student George Mason University

Erick Torres

Data Scientist Serco-NA M.S. Data Analytics Engineering, George Mason University

Pre-flight risk assessment is a key step in the pre-flight planning process to ensure the safety of flight prior to takeoff. Traditional flight risk assessment tools (FRATs) are often inaccessible, time-intensive, and incomplete. This can lead to improper or time-critical risk assessment in flight, rather than complete and deliberate risk mitigation. The solution is to augment traditional FRATs with automated risk assessment based on pilot and flight profiles to produce a risk score that the pilot can then further evaluate for potential risk mitigation. This speeds up the risk assessment process, potentially reduces pilot bias, and can be incorporated into pre-flight planning applications.

Solution

Problem

"Poor risk management was a root cause of nearly 50 percent of the fatal business aircraft accidents." - Wright, 2019

"Civilian aviation operations excluding paid passenger transport, accounts for 94% of civilian aviation fatalities." — Boyd, 2017

"60% of fatal accidents occurred while flying in instrument meteorological conditions (IMC), most frequently "between October and April, on weekends, in early morning and evening periods, and along the West Coast, Colorado Rockies, Appalachian Mountains, and the Northeast." -Fultz & Ashley, 2016

Available Flight Risk Assessment Tools (FRAT)

Though there are FRATs on the market, most include a score-based system based on pilot input which might be prone to bias.

ZDigitalPro, LLC FRAT App										
Trip) Details									
Name Make/Model Date Departure Airport	National Business Aviation Association FLIGHT RISK ASSESSMENT TOOL WORKSHEET (TWO-SIDED)									
Arrival Airport Flight Conditions	Three step proc FAA Safety Team FRAT Conduct before									
PAVE	STEP 1: IDENTIFY	Instructions: Check the Yes box opposite each statement that applies to your flight. Then compare your total risk value to the Risk Matrix Chart.								
Less Than 15 Hours in L		Rilot Namo								
Flight Will Occur After V										
Less Than 8 Hours Siee		Date								
Instruction Received in I	PILOT	Departure Airport								
WINGS Phase in Last 6	Qualification/	Arrival Airport								
Instrument Rating Curre	currency/proficiency									
Air	Aeromedical/ human factors	Pilot	Yes?	Risk Value	Total Risk Value			Risk Matrix Chart		
Less Than 40 Hours in A	AIRCRAFT	Less than 50 Hours in Aircraft or Avionics Type		0	0	Pilot	Time in Type	Low	Moderate	High
Less Than 40 Hours with	Fuel/range/payload	Less than 15 hours in last 90 Days		0		VFR	<100	5 to 15	15 to 20	>20
Less man 40 Hours wit		Flight will occur after work		0		VFR	>100	15 to 20	20 to 25	>25
	Equipage (incl. inoperative	Less than 8 hours sleep in 24 hours prior to flight		0		IFR	<100	20 to 25	25 to 30	>30
	equipment)	Dual Instruction Received in last 90 days		0		IFR	>100	25 to 30	30 to 35	>35
	Performance	WINGS Phase Completion in last 6 months		0						
		instrument Rating, current and proticient		0						
		Flight Conditions								
		Twilight or Night		0						
		Surface wind greater than 15 Knots		0						
		Cross wind greater than 7 Knots		0						
		Mountainous Terrain		n						

FRAT Project Modeling Methodology

National Transportation Safety Board

Number

of Records: 46,052

Years: 1983-2022

Total Flight Hours Actual Instrument Time Flight Hours in Make Flight Hours at Night Rotary Wing Flight Hours Single Engine Flight Hours Multi-Engine Flight Hours Simulated Instrument Hours

Aircraft Make Aircraft Model Airframe Hours Certified Max Gross Weight Airframe Inspection Timeline Engine hours No. Engines Engine Manufacturer

Dept/Dest Airport Airport Location Airport Elevation Departure Time Runway length Runway width Day of week Month

Temperature / Dewpoint Wind Direction / Speed Meteorological conditions Ceilings Visibility Weather Observation Time Light Conditions Wind Gust Speed

Data Transformation

Labeling the Dataset: Risk Categories

Proposed Risk Categories

Risk Score	Consequence Level	Description
0	Low	Flight resulted in an incident or accident with no aircraft damage AND no minor injury.
1	Medium	Flight resulted in an incident or accident with either minor aircraft damage OR minor injury, AND no fatality.
2	High	Flight resulted in an incident or accident with either severe aircraft damage OR severe injury, AND no fatality.
3	Catastrophic	Flight resulted in an incident or accident with either fatality or destruction of the aircraft.

Note: When comparing aircraft damage and injury, the highest of the two dictates the classification. Numerical risk scores are only utilized for modeling purposes, and it is preferred that an end user see an output of "Low" or "High" rather than 0 or 2. The risk score of 0 does not imply a no-risk flight.

Balancing the Dataset: Resampling

Risk Classification Labels before resampling

Risk Classification Labels after resampling

Cleaning the Dataset

Fixing random errors, binning, and formatting

> Standardizing Datatypes

Label Encoding

Handling Missing Data

BERT

XGBoost

XGBoost Modeling Results

Test Iteration	Configuration	F1 Score Results	
Baseline	Imbalanced	0.76	
1	Resampled	0.85	
2	Category reduction, imbalanced	0.77	
3	Category reduction, resampled	0.79	
4	Normalized, resampled	0.84	
5	Category reduction, normalized, resampled	0.79	
6	10-fold cross-validation, resampled*	0.85	
Note: * indicates the preferred model configuration			

Results

Overall, class 0 and 1 seemed overfit due to resampling techniques, but it improved the ability to more accurately predict class 2 and 3. Process

Dataset Balancing

> Model Configuration

Label Effects

> 10-Fold Cross Validation

Random Forest

Random Forest Modeling ResultsTest IterationConfigurationF1 Score ResultsBaselineImbalanced0.751Resampled0.852Resampled, 10-fold cross validation*0.86Note: * indicates the preferred model configuration

True label Predicted label

Preferred Model Configuration Confusion Matrix

Results

- 10-fold cross validation returned the highest F1 score – 0.86
- Model correctly predicted highest risk classifications

10-Fold Cross Validation

Dataset Balancing

Process

Model Configuration

Feed-Forward Neural Network

Neural Network Modeling Results

Test Iteration	Configuration	F1 Score Results
Baseline	Imbalanced, whole data set imputation	0.67
1	Imbalanced, class-based imputation*	0.60
2	Resampled, class-based imputation*	0.60
3	Resampled, whole data set imputation	0.89
4	Resampled, whole data set imputation, 10-fold cross validated using KerasClassifier	0.90
5	Resampled, whole data set imputation, 10-fold cross validated using StratifiedKFold**	0.98
Notes: * This method for imputation introduced error and was not used moving forward		

** indicates the preferred model configuration

Preferred Model Configuration Confusion Matrix

Results

- While imputation by class label seems ideal, the process utilized introduced error.
- The resampled dataset utilizing whole dataset imputation, validated using StratifiedKFold 10-fold cross validation resulted in the most accurate predictions.

Dataset Balancing

Process

Missing Value Imputation

Model Configuration

> 10-Fold Cross Validation

Bert Modeling R	Results	
Test Iteration	Configuration	F1 Score Results
1	Data with context	1.0
2	Data without context	1.0

BERT

Bert Modeling Training & Validation Loss Training & Validation Loss 0.030 0.025 0.020 0.015 0.010 0.005 0.000 1 2 3 4

Results

- Although the training and validation loss curves converge nicely, such extremely high accuracy and F1 scores suggest overfitting and the inability for the model to generalize.
- Further research is necessary to determine the cause of these results.

Data Concatenation

Process

Label

Resampling

Embeddings

Hyperparameter Tuning

Evaluation

Feature Importance

Comparison

Model Performance by F1 Scores

FNN

XGBoost / Random Forest

BERT

SON Future Work

Way Forward

Further development, testing, and evaluation of methods and high performing models, along with the incorporation of improved missing value imputation methodology for neural networks.

2 Expansion of training dataset to include low risk flight records based on voluntary general aviation pilot participation. Reduces bias in model by reducing need for rebalancing.

- Deploy the optimal model through development of an application for the ingestion of new flight records, incorporating risk assessment class assignment (*see*
- next slide).

The Way Forward

- 1. Boyd, D. D. (2017). A Review of General Aviation Safety (1984–2017). Aerospace Medicine and Human Performance, 88(7), 657–664. https://doi.org/10.3357/amhp.4862.2017
- 2. Flaticon. (2023a, May 30). Airplane Icon 561698. https://www.flaticon.com/free-icons/airport
- 3. Flaticon. (2023b, May 30). Data modelling Icon 8329485. https://www.flaticon.com/free-icons/predictive-modeling
- 4. Flaticon. (2023c, May 30). Digital Transformation Icon 9768191. https://www.flaticon.com/free-icons/digital-transformation
- 5. Flaticon. (2023d, May 30). Etl Icon 5708950. https://www.flaticon.com/free-icons/etl
- 6. Flaticon. (2023e, May 30). Evaluation Icon 6757112. https://www.flaticon.com/free-icons/risk-management
- 7. Flaticon. (2023f, May 30). Plane Icon 723955. https://www.flaticon.com/free-icons/plane
- 8. Fultz, A. J., & Ashley, W. S. (2016). Fatal weather-related general aviation accidents in the United States. Physical Geography, 37(5), 291–312. https://doi.org/10.1080/02723646.2016.1211854
- 9. National Business Aviation Association. (n.d.). *Flight Risk Assessment Tool*. https://nbaa.org/wp-content/uploads/2018/06/flight-risk-assessment-tool.pdf
- 10. Resources Library Contents FAA FAASTeam FAASafety.gov. (n.d.). https://www.faasafety.gov/gslac/ALC/libview_normal.aspx?id=352396
- 11. Wright, R. (2019, October 29). Risk assessment tools. Aviation Safety. Retrieved January 11, 2023, from https://www.aviationsafetymagazine.com/features/risk-assessment-tools/
- 12. ZDigitalPro,LLC. (2017, April 18). *Flight Risk Assessment Tool*. https://apps.apple.com/us/app/flight-risk-assessment-tool/id1080401103?platform=iphone