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Unmanned Aerial Systems (UAS) are the Future
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Delivery UAS[1] UAS as a First Responder[2]

• Lower cost of shipping 
• Faster deliveries
• Fewer emissions
• Shorter routes 

• Quicker response time 
• Cheaper than sending an 

officer
• Provides crucial 

information to responders

Construction and Inspections

• Easily inspect hard to 
reach infrastructure

• Quickly assess damages 
for insurance claims 

These industries, and many more, are beginning to realize the potential UAS have
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• There are several safety concerns around UAS 
entering the National Airspace 

• Commercial UAS pilots must follow FAA Part 107 
rules, including: 

• Avoid manned aircraft 

• Keep the UAS in sight 

• No sustained flights over people

• Regulations on flights over people complicate UAS 
operations

• People are dynamic, constantly on the move

• Hard to predict

• Some areas have been slow to adopt UAS in part 
due to risk to people on the ground

Significant Limitations on UAS Use
4

No Flights Over People 
and Stadiums

No Flights Near 
Airports and No-Fly 

Zones

Avoid Tall Buildings 
and Obstacles
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Safety concerns for people on the ground drive the need for 

risk assessment and mitigation techniques to fully enable 
UAS operations



• Georgia Tech Police Department (GTPD) has 
shown interest in starting a UAS program

• ASDL has collaborated with them in the past 
with their Concept of Operations 
(CONOPS)[1]

• Risk assessment and mitigation need to be 
incorporated into the CONOPS to ensure safety 
and regulatory compliance 

• Georgia Tech campus very dynamic due to 
classes and events 
• Need to account for dynamic student population 

for UAS risk assessment 

UAS Use for Georgia Tech Police Department
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• Risk always present, despite 
mitigation attempts

• Manned aircraft are required to 
operate within target level of safety 
• Historical data drives risk assessment for 

manned aircraft[1][2]

• UAS need target levels of safety for 
operation and certification as well[3]

• UAS have little comparable historical 
data to perform similar risk assessment[4]

• Difficulty with risk assessment without 
historical data  

Manned vs Unmanned Aircraft Risk Assessment
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• In the absence of historical data, modeling and simulation methods have 
become the next best option for ground risk assessment[1]

• State of the art modeling and simulation methods for ground risk assessment 
are physics-based 
• Ground risk measured as expected number of fatalities for a flight (fatalities/flight hour) 

• Acceptable ground risk usually 10-7 to 10-6 fatalities/flight hour[2][3] for UAS 

Physics-Based Model for UAS Risk Assessment
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• Mass 
• Speed 
• Frontal Area
• Altitude
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• Mathematical models are used to 
simulate trajectories for various 
descent types for a rotorcraft UAS[1]

• Ballistic descent 

• Uncontrolled glide 

• Parachute descent

• Ground risk is dominated by ballistic 
descent[1]

• Using initial conditions, find impact 
area given governing equations[1]

• To account for UAS uncertainties, need 
to simulate descent several times

Physics-Based Model for UAS Risk Assessment: Probable Impact Locations
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Physics-Based Model for UAS Risk Assessment: Estimating Fatality Rate
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• High-fidelity, probabilistic solutions mentioned can become computationally 
expensive and time consuming
• Provide best estimation for ground risk 

• Not suitable for rapidly changing environments like cities 

The Limitations of the Physics-Based Model
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• Mass 
• Speed 
• Frontal Area
• Altitude

Initial Conditions
Expected 

Fatality Rate[1]

Probable Impact 
Area

New methods are required that can efficiently and accurately estimate UAS ground risk



• Some engineering systems are computationally expensive 
to evaluate

• Surrogate modeling and machine learning methods are 
designed to approximate expensive functions[1]

• Tradeoff accuracy for efficiency

• Examples of surrogate models include

• Response surfaces 

• K-nearest neighbor 

• Random forest 

• Neural networks

• Some machine Learning models require data for training 

• Can rely on the physics-based models to generate data  

Machine Learning and Surrogate Modeling 
11

Input

An Artificial Neural Net

Output

A Response Surface

Objective: Use Machine Learning techniques to estimate UAS 
ground risk more efficiently using a high fidelity physics-based 

model to generate training data 
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• Ground risk dependent on UAS 
characteristics affecting descent 
trajectory and impact energy

• Mass 

• Frontal area 

• Speed 

• Altitude 

• Spatial data also a major component for 
estimating ground risk 

• Population density 

• Shelter factor 

• Proposed solution for UAS ground risk 
assessment needs to account for: 

• Numerical data 

• Spatial data 

Machine Learning Architecture for UAS Risk Assessment
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Numeric Data

Fully 
Connected 

Layers

Expected 
Fatality Rate

Spatial Data

Building Layout Population 
Density

• Mass 
• Speed 
• Frontal Area
• Altitude

Convolutional Neural 
Network (CNN)

Multilayer 
Perceptron

Proposed Machine Learning Solution[1]

[1] A. Rosenbrock, "Keras: Multiple Inputs and Mixed Data" pyimagesearch. 2019. https://pyimagesearch.com/2019/02/04/keras-multiple-inputs-and-mixed-data/



• For robustness, need to estimate 
risk for a variety of combinations of 
UAS parameters 

• Ranges for UAS parameters found 
based on common UAS used 
commercially 

• Can use a Latin Hypercube Design of 
Experiments (DoE) to explore the 
design space

• Creates points evenly spread 
throughout the design space[1]

• 248,000 UAS combinations created 
using the Latin Hypercube DoE

Data Collection: UAS Parameters
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Property Min Value Max Value

Mass (kg) 2 9

Frontal Area 𝑚2 0.347 0.81

Horizontal Speed (m/s) 5 35

Initial Altitude (m) 15 140

Latin Hypercube Design 
of Experiments

Property Case 1 Case 2 Case 3 …
Case 

248,000

Mass (kg) 8.25 2.05 8.83 … 4.56

Frontal Area
𝑚2 0.41 0.66 0.70 … 0.77

Horizontal
Speed (m/s)

18.38 14.95 7.29 … 5.73

Initial 
Altitude (m)

24.36 60.30 70.75 … 83.95
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[1] R. Myers. "Response Surface Methodology Third Edition" John Wiley and Sons, Inc. 2009



• Use campus of Georgia Tech as 
example area

• Discretize campus into 10m x 10m 
cells 

• Each cell is a unique location for risk 
assessment

• Buildings provide information on 
appropriate shelter factor to use

• Building locations obtained from 
open source OpenStreetMap[1]

• High-resolution population density 
obtained from LandScan[2][3]

• 90m x 90m resolution

• Extract 29 cell x 29 cell areas for 
each of the 248,000 cases at 
various locations 

Data Collection: Spatial Information
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[1] OpenStreetMap contributors, "Planet dump retrieved from https://planet.osm.org" 2017. URL: https://www.openstreetmap.org

[2] Oak Ridge National Laboratory LandScan Database URL:https://web.ornl.gov/sci/landscan 

[3]J. Breunig et. al. "Modeling Risk-Based Approach for Small Unmanned Aircraft Systems" The MITRE Corporation. 2018

Location 
of 

Interest

Shelter Information Population Density

Case 1 Case 10 Case 248,000
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• Various papers rely on 
the LandScan database 
for risk 
estimations[1][2][3]

• LandScan can provide 
averages for daytime 
and nighttime 
• Fails to account for 

anomalous events like 
concerts, festivals, etc. 

• Can rely on social media 
activity to supplement 
historical data 
• Useful for capturing 

anomalous events not 
accounted for  

Data Collection: Population Density Estimates with Social Media
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[2] Adie, D. “Quantitative Approach and Departure Risk Assessment for Unmanned Aerial Systems (QUADRA)” ” Thesis submitted to Virginia Polytechnic Institute and State University. 2022. 
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LandScan Population Density 
Estimate

Social Media Activity During the 
Atlanta Dogwood Festival
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Training the Machine Learning Model
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Determine 
Probable Impact 

Locations

Find Fatality 
Rate for Data 

Point

Number of 
Layers

Min Number of 
Neurons per 

Layer

Max Number of 
Neurons Per 

Layer

Multi-Layer
Perceptron

2 4 100

Number of 
Convolutional

Layers

Min Number of
Filters per 

Convolutional 
Layer

Max Number of
Filters per 

Convolutional 
Layer

Convolutional
Neural Net

2 4 128

Machine Learning Model 
Architecture Parameters 

Random Search 

Machine Learning Model

CNN

MLP

Training Data

Input Data

Output Data

Machine Learning Model
Performance

Property Case 1 Case 2 Case 3 …
Case 

248,000

Mass (kg) 8.25 2.05 8.83 … 4.56

Frontal 
Area 𝑚2 0.41 0.66 0.70 … 0.77

Horizontal
Speed
(m/s)

18.38 14.95 7.29 … 5.73

Initial Z 
Position 

(m)
24.36 60.30 70.75 … 83.95

Numeric Data

Case 1

Case 10 Case 248,000
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• Mean Absolute Percent Error (MAPE) 
used as the cost function for training 

• Common risk values O(10-7) or O(10-6) 
fatalities per flight hour
• 1 fatality every 10,000,000 hours (1,140 

years)

• 1  fatality every 1,000,000 hours (114 
years)

Machine Learning Training Results

Training Loss Validation Loss

Mean Absolute
Percent Error 

(MAPE)
16% 22%

17

Best Model Training Summary

22% error is the difference between 0.78 fatalities ~100 years vs 
1 fatality ~100 years 
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Machine Learning Model vs Physics-Based Model Risk Maps
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• Mass: 6 kg 
• Cross Section Area: 0.6 m2

• Speed: 25 m/s
• Altitude: 35 m

Building Layouts Population Density

Georgia Tech Campus

Model Inputs

Physics-Based Model Results

Machine Learning Model Results

The Machine Learning model was able to produce the risk map 
with a MAPE of 19% compared to the physics-based results
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Rapidly Generating Risk Maps 
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• Time to calculate a risk map 
decreases from hours to seconds 
using the Machine Learning 
model 

• Allows for generating risk maps 
for a variety of UAS characteristics 
and operating conditions quickly
• Account for rapidly changing 

population densities

Mass: 2kg,Cross-Sectional Area: 0.4m2, Speed:25m/s, Altitude:35m  

Mass: 8kg, Cross-Sectional Area: 0.75m2, Speed: 30m/s, Altitude:35m  
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Rapid generation of risk maps can assist in 
generating safe routes



Route Scout: A Tool for Generating Safe Routes
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Machine Learning 
Model

Building 
Coverage

Population 
Density

Spatial Data for UAS 
Operating Area

Mass 
Frontal Area

Speed
Flight Altitude

UAS Characteristics

Map of UAS Ground 
Risk

Route 
Planner

Start 
Point

End 
Point

Minimum Risk 
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Building Heights FAA Facility Maps Elevation
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Route Scout Demonstration
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• Created routes using two 
different risk maps for 
comparison

• Risk map from physics-based 
model

• Risk map from machine learning 
model

Comparing Machine Learning with Physics-Based Route Planning
22
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Routes Created Using the Physics-Based Risk Map and 
the Machine Learning Risk Map 

Route Using Machine Learning Risk Map
Route Using Physics-Based Risk Map

The physics-based risk map and the Machine 
Learning risk map result in similar route 

solutions



• Desired level of risk ensures 
solution does not surpass target 
level of safety 

• Target Level of Safety in this 
example: 10-7   fatalities/hour

• Predicted mean risk from 
Machine Learning model 
comparable to actual mean risk 
calculated using physics  

Route Planning Using Machine Learning Risk Assessment
23

Predicted 
(fatalities/flight hour) 

Actual 
(fatalities/flight hour)

MAPE(%)

Max Risk 8.55e-8 7.13e-8 19.8

Mean Risk 1.72e-8 1.8e-8 4.19
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Routes Tailored for Every Application
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Flexible Target Level of Safety allows for urgent applications to trade 
off safety for response time
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Routes Tailored for Every UAS
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Easily change the UAS parameters and flight conditions to observe 
how that affects the routing solution
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• Traditional methods for UAS ground risk estimation can be time consuming and 
inefficient 

• Developed novel way to estimate ground risk using Machine Learning techniques
• Reduce computation time without significantly sacrificing accuracy 

• Explore how UAS design and operating conditions affect predicted risk 

• Can use this Machine Learning method to create low risk routes 

• Flexible for any UAS 

• Tailored for any application

• Future work
• Incorporate wind and additional UAS failure types 

• Improve accuracy of Machine Learning model   

• Create different Machine Learning models for different classes of UAS 

Conclusion and Future Work
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Aerospace Systems Design Laboratory

Thank you!

Questions?
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Backup Slides
28

1. Presenter Name / Notes / Copyright Statement



Uncertainties in Descent Trajectory
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• The initial conditions of the UAS 
descent trajectory and impact risk 
level[1]

• Mass (𝑚)

• Frontal Area (𝐴)

• Drag Coefficient 𝐶𝑑
• UAS Speed 𝑉𝑥, 𝑉𝑦, 𝑉𝑧
• Position (𝑥, 𝑦, 𝑧)

• Some parameters are probabilistic 
• Requires repeated simulations to 

account for uncertainty 

• Pull parameters from normal distribution 
with given standard deviation

Property Standard Deviation

Drag Coefficient 𝐶𝑑 0.2

Horizontal Speed (m/s) 0.5

Vertical Speed (m/s) 0.5

Initial X Position (m) 1.5

Initial Y Position (m) 1.5

Initial Z Position (m) 0.5

Probabilistic Characteristics Based on Off-The-Shelf UAS[2][3][4]

X, E Y, N

z



Architecture for Machine Learning Model
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• Applied the Machine Learning model to a 
different part of the city not used in 
training 

• 62% MAPE for new area 
• Likely a result of higher population 

densities than found at training location 

• Machine Learning model still accurate at 
less populated areas used in route 
planning
• Routing solution from Machine Learning 

model also similar to that from physics-
based model 

Machine Learning Generalization 
31

Predicted Actual MAPE(%)

Max Risk (fatalities/flight
hour)

1.8e-7 2.39e-7 24.4

Mean Risk (fatalities/flight
hour)

6.14e-8 5.883-8 4.5

Physics-Based Model 
Results

Machine Learning Model 
Results


