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Motivation

What benefit does the project
provide?




Delays are Costly, and the
Runway is Constrained

Total Cost of Delay in the U.S. (dollars, billion)

2016 2017 2018 2019
Airlines 5.6 6.4 7.7 8.3
Passengers 133 14.8 16.4 18.1 = AR T
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The Cost of Overloading the Taxi Queue /
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In 2022, airlines spent >30% of Based on the size of the aircraft,
their operating budget on fuel, or 1t consumes anywhere between
$222 billion 12-42 gallons/min/engine




The goal of the present study, therefore, is to
create a low fidelity, easily interpretable

machine learning model to predict taxi times
across airfield geometries and use this to feed
into a taxi time optimization algorithm.




Methodology
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Target
Variable
Wh we obtain

historical taxi time data?




Industry Partnership
HNTB

HNTB's Aviation Planning + Environmental
Team and airport planners at each airport
volunteered Aerobahn data with unmarked
callsigns for:

George Bush Intercontinental Airport

(IAH)

Newark International Airport (EWR)

This Aerobahn data included operation
type, time, gate, and 00OI data: block off,
wheels off, wheels on, and block in times.




Taxi Times at the Two Study Airports
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From the O0OI data, taxi
times were calculated as:

Block In - Wheels On = Taxi-In Time
Wheels Off — Block Off = Taxi-Out Time
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“2Q” Taxi Time

Block-off/ Back of Wheels-off/

pushback departure queuc oloott The departure taxi-out can be
—H | B~ segmented into the queuing process
C— and the unimpeded "2Q" time from
To-queue “2Q” Departure queue .
+ takeoff roll gate pushback to entering the back
Taxiout of the departure queue

By predicting both the total taxi time and the 2Q time, the
model performance can indicate how well the predictor
variables capture variability in each of the two durations
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2Q Time =~ Taxi—Out Time — Runway Processing Time
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Predictor
Variables

What data can explain the
taxi time of an aircraft?




Calculating the
Significant Features

Departure indicator
1 if aircraft operation is a departure; 0 if arrival

Distance

Traced minimum =\
viable taxi pathway
from gate concourse t0
runway threshold

&5 \ : ) X
i == & . & A . v £
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nDepOut Count of taxiing out aircraft who have pushed
back but not yet taken off by the time of
pushback for the study aircraft




Additional Features

Feature

Description

Sum of angles turned through along

Angle Sum Degrees
£ £ the taxi pathway
ey # of aircraft Number of glrcraft taxiing to gate at
time of pushback
AArTOUL # of aircraft r%gnwber of aircraft tax1y1g to runvvgy or
in takeoff queue at time of landing
I # of aircraft Number of glrcraft tax1%ng to gate at
time of landing
Degrees Surface temperature at the METAR data
Temperature : : :
Fahrenheit collection point
Wind Speed Miles per Wind speed atﬁhe METAR data
hour collection point
Visibility | Statute miles Visibility at the METAR data collection

point
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Regression

How well do the predictor
variables allow us to forecast
future performance?




All Data

Preprocessing

Training data Test data
L= Tmin
Lscaled — T
max min Fold1 || Fold2 | Fold3 | Fold4 | Fold5 |\
y = ]og(y) Splitl | Fold1 || Fold2 || Fold3 || Fold4 || Fold5

Split2 | Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Data scallng Split3 | Fold1 || Fold2 | Fold3 | Fold4 | Fold5
Split4 | Fold1 || Fold2 | Fold3 Fold4 | Fold5

CrOSS_Validation/ Split5 | Fold1 || Fold2 || Fold3 | Fold4 || Fold5 |_/

> Finding Parameters

Final evaluation { Test data

Sci-kit Learn documentation




Original & 2Q Training Data Performance

Total Taxi Time

2Q Taxi Time
Tuned Hyperparameters R? RMSE

Forest Regressor

min_samples_split = 50

min_samples_split = 50

Tuned Hyperparameters R? RMSE
Linear Regressor N/A 0.45 0.40 N/A 0.64 0.67
Elastic Net alpha = 0.1, I1_ratio = alpha = 0.1, I1_ratio =
Regressor 0.01 0.39 0.43 0.99 0.38 0.87
KI'QNe'ghb”s n_neighbors = 31 054 | 037 n_neighbors = 21 0.79 0.50
egressor
isi - max_depth =7,
D;ms:ﬂon Tr;ae mar;alze(a?enpgze_sg—’ 40 0.58 0.35 max_leaf nodes = 40, 0.82 0.47
egresso — = - min_samples_split = 62
Random Forest max_depth = 10, max_depth = 10,
max_leaf nodes = 102, 0.61 0.34 max_leaf _nodes = 102, 0.83 0.46
Regressor . o . o
min_samples_split = 50 min_samples_split = 50
Shallow Decision max_depth = 5, max_depth = 5,
Tree Regressor max_leaf _nodes = 20 B s max_leaf _nodes = 40 i L
max_depth = 5, max_depth = 5,
Shallow Random | . "\ ¢ odes =102, | 055 | 037 | max leaf nodes =102, | 0.82 0.47




2Q Taxi Time Prediction Performance Results

IAH = June 2022 EWR - June 2022

Estimator

R? RMSE R? RMSE
Linear Regressor 0.56 0.74 0.20 0.94
Elastic Net Regressor 0.40 0.92 -0.09 1.10
K-Neighbors Regressor 0.69 0.62 0.22 0.93
Decision Tree Regressor 0.74 0.57 0.16 0.97
Random Forest Regressor 0.75 0.55 0.18 0.95
Shallow Decision Tree 0.74 0.57 015 0.98

Regressor

Shallow Random Forest 0.76 0.54 0.18 0.96

Regressor




Simple Linear Regression
For the July - September 2022 IAH training dataset:

Total Taxi Time 2Q Taxi Time

Estimator

Tuned Hyperparameters R? RMSE @ Tuned Hyperparameters R?
Linear Regressor ‘ N/A 0.45 0.40 N/A 0.64 0.67

Linear Regressor on Total Taxi Time Data

Departure_Indicator Distance Angle Sum nArrOut nArrin
Intercept
0.74 0.47 -0.07 -0.05 0.51
nDepOut Temperature Wind Speed Visibility .
0.36 0.14 0.09 -0.09




Simple Linear Regression
For the July - September 2022 IAH training dataset:

2Q Taxi Time
Tuned Hyperparameters R? RMSE @ Tuned Hyperparameters R?

Linear Regressor N/A 0.45 0.40 N/A 0.64 0.67

Total Taxi Time

Estimator

Linear Regressor on 2Q Taxi Time Data

Departure_Indicator Distance Angle Sum nArrOut nArrin
Intercept
0 1.79 -0.16 -0.09 -0.24
nDepOut nDepln Temperature Wind Speed Visibility 52
-4.51 -0.20 -0.43 -0.10 -0.20




Investigating the 2Q Decision Tree Regressor
For the July - September 2022 IAH training dataset:

Total Taxi Time
Tuned Hyperparameters R?

Estimator

Shallow Decision max_depth = 5,

2Q Taxi Time

RMSE Tuned Hyperparameters
max_depth = 5,

R2

Tree Regressor max_leaf nodes = 20

max leaf nodes =40

| 0.82 | 0.47 I




Investigating the 2Q Decision Tree Regressor
For the July - September 2022 IAH training dataset:

Depth: 5 levels
Total Branch Nodes: 31
Total Leaf Nodes: 32

Total Taxi Time 2Q Taxi Time
Tuned Hyperparameters R? RMSE Tuned Hyperparameters R?

Estimator

Shallow Decision max_depth = 5,
Tree Regressor max_leaf nodes = 20

max_depth = 5,

0.54 0.37 max leaf nodes =40

0.82 0.47




Investigating the 2Q Decision Tree Regressor

For the July - September 2022 IAH training dataset:
nDepOut =< 7.5

sssssss = 42385

Depth: 5 levels
Total Branch Nodes: 31
Total Leaf Nodes: 32

Total Taxi Time 2Q Taxi Time
Tuned Hyperparameters R? RMSE Tuned Hyperparameters R?

Estimator

Shallow Decision max_depth = 5,
Tree Regressor max_leaf nodes = 20

max_depth = 5,

0.54 0.37 max leaf nodes =40

0.82

0.47
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Optimization

How can we utilize the
outputs from the ML model to
make pushback decisions?




Optimization Formulation

The optimization is
framed as a version of
the operations research
‘newsboy problem":

Given:

« An uncertain demand
distribution

« A cost of purchasing »
papers

« A cost of missing out on
sales (running out)

Newsboy Problem
Overage cost
unsold papers
( papers) Underage cost
(missed profits)
Optimal Demand distribution

order size

Pushback Problem

Type A cost :

(underutilization)
Type B cost

(queueing)

Optimal  Taxi time distribution
pushback interval

One can identify an optimal amount of papers to purchase by
minimizing the integral of the area bounded by the x-axis
and the product of the cost functions and demand distribution

Optimal Pushback Interval = F~1 (

Type B Cost )
Type B Cost+Type A Cost’ ad




Opi‘imizaﬁon OU'l'pU'l' The optimization rests on two

main pieces:

2Q Distri?ution for Sample #500 from June EWR Test Data, with Cost Ratio = 1.32:1 _ e The 2Q distribution
— R  Scale = ML model
\ -~-- Optimal Pushback Interval prediction
025 | + Standard deviation =
§ RMSE of the ML model
20 i « The cost functions
—_ i + Runway underutilization
| 1s 1.32 times more
010 E expensive than the
E queuing cost based on
00 : our delay calculations
o i + However, this ratio can

0.0 25 50 75 100 125 15.0 175 20.0
Txi Times (min) be changed to match
airports’ preference
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Optimization Sensitivity to Cost Function

'2Q’ Distribution for Sample #500 from June EWR Test Data, with Cost Ratio I l:1|

'2Q" Distribution for Sample #500 from June EWR Test Data, with Cost Ratio
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'2Q" Distribution for Sample #500 from June EWR Test Data, with Cost Ratio

020

015

—— Lognormal Distribution of 2Q Taxi Times
—— Runway Underutilization Cost

—— Queueing Cost

=== Optimal Pushback Interval

75

100 25 15.0 175 20
Taxi Times (min)

Under the same 2Q taxi time lognormal distribution, the optimal
pushback interval decreases as the runway utilization to queuing cost
ratio increases.




Optimization Sensitivity to Distribution

'2Q" Distribution for Sample #500 from June EWR Test Data, with Cost Ratio = 1.32:1 '2Q’ Distribution for Sample #500 from June EWR Test Data, with Cost Ratio = 1.32:1 '2Q" Distribution for Sample #500 from June EWR Test Data, with Cost Ratio = 1.32:1
~—— Lognormal Distribution of 2Q Taxi Times —— Lognormal Distribution of 2Q Taxi Times — Lu.gnormal Distribution of 2Q Taxi Times
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Under the same cost function ratio, the optimal pushback interval
increases as the prediction of the 2Q taxi time—the scale of the
lognormal distribution—increases.
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Discussion

What can be learned from this
project, and how can future work
build on what was studied?




Limitations

- Small data sample size

« Ideally, the model would be trained on more than just three months of data and have more
testing data at EWR than = 5,000 departures

- At present, the optimization only is carried out for an individual aircraft, and not

tightly constrained
« 2Q taxi time prediction is subject to significant variation

- Capturing the ground truth




Future Work

- Create a proof-of-concept of the pushback control algorithm that results from the
optimization formulation
- Converting theoretical optimal 2Q taxi times into practice via ATC ground
control presents a significant hurdle
- Evaluate this method via simulation versus other known pushback strategies like
N-Control



Any Questions?
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