

- Unstabilized approaches are the top cause of crashes
- Pilots must check for stabilized approach at certain altitudes
- Plane cockpits already filled with visual indicators
- Auditory alerts inform pilots whether to go around without overwhelming them

Auditory Alert	Time Before Arrival	Benefit
"Go-around"	Few seconds - 20 minutes	Shorter auditory a critical landing reduces interfere prevents sudden o adjustments by
"Landing Risk High"	60 minutes	Auditory alert del hour prior prom
"Landing Risk Medium"		vigilance and p overlooking re sensors, reducing late recognition landing

efit

y alert during ing stages ference and en dangerous by the pilot delivered an ompts early d prevents g relevant ing the risk of tion during

- 6 models trained and tested: Logistic Regression, KNN, XGBoost, MLP-Classifier, Decision Tree, Random Forest
- 80/20 training/testing split
- **Evaluated on Accuracy Score:**

Model Name

Jumbers: tigating Aviation Accident ayad Sarker, Jake Sigman, Sohaib Bhatti mi, Dr. Bahareh Estejab				
Earming a Solution				
I Uning a Solution				
unway excursions (54% of all accidents)				
ve been avoided with a decision to	aviatio			
d (Flight Safety Foundation)	o Inte			
of unstable approaches result in	o Tab			
d policy compliance	Seq			
(Landing Approach Risk Reduction and	Cleane			
ent S ystem)	Impler			
ry alert system designed to enhance	Final			
tuational awareness	feature			

Inputs Real-time sensors Physical characteristics Machine Learning Model Model makes computations at specific time before ETA

Concept

Accuracy = (# of Correct Predictions) / (Total # of Predictions)

- LARRAS helps pilots manage information overload during crucial flight moments
- Clear and concise auditory warnings communicate potential safety hazards effectively
- Enhanced situational awareness enables pilots to make informed decisions

Team. October 2014. Accessed June 8, bk1.pdf.

Dataset

- nal Transportation Safety Board (NTSB)
- on accident database
- ernational flight info from 2008-2022
- **les used:** Events, Aircrafts, Event uence
- ed and balanced dataset
- nented feature selection
- dataset: 1,254 observations and 22

Auditory Alert System Pilot recieves auditory alerts

Conclusion

• Random Forest model is the best ML model for the data

References

- American Flyers. "The Basics of Stabilized Approaches." American Flyers, [URL: https://americanflyers.com/the-basics-of-stabilized-approaches/]. Accessed June 11, 2023.
- Federal Aviation Administration. "Airplane Flying Handbook" (FAA-H-8083-3A). FAA Safety
- 2023.https://www.faasafety.gov/files/notices/2014/Oct/FAA-H-8083-3A_Airplane_Flying_Hd
- Flight Safety Foundation. "Go-Around Study: Analysis of Go-Around Events and Procedures." Flight Safety Foundation, March 2017. Accessed June 8, 2023. https://flightsafety.org/wp-content/uploads/2017/03/Go-around-study_final.pdf.
- National Transportation Safety Board (NTSB). Aviation Accident Database and Synopses. Retrieved from https://www.ntsb.gov/Pages/AviationQuery.aspx